Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 60 additions & 48 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -515,45 +515,65 @@ def does_token_look_special(self, token: str | bytes) -> bool:

# used for GPT-2 BPE and WordPiece vocabs
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)

tokpre = self.get_vocab_base_pre(tokenizer)

reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
tokens: list[str] = []
toktypes: list[int] = []

for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token: str = reverse_vocab[i]
if token in added_vocab:
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
if not tokenizer.added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")

if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
if hasattr(tokenizer, "vocab"):
# Standard Hugging Face tokenizer (e.g., GPT-2, BERT)
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
reverse_vocab = {id_: tok for tok, id_ in tokenizer.vocab.items()}
assert max(tokenizer.vocab.values()) < vocab_size, "Vocab IDs exceed vocab_size"
added_vocab = tokenizer.get_added_vocab()

for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
if token in added_vocab:
if hasattr(tokenizer, "added_tokens_decoder") and i in tokenizer.added_tokens_decoder:
if not tokenizer.added_tokens_decoder[i].normalized:
previous_token = token
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
if previous_token != token:
logger.info(f"{repr(previous_token)} normalized to {repr(token)}")
if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
else:
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # Normalize spaces
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
# NOTE: this was added for Gemma.
# Encoding and decoding the tokens above isn't sufficient for this case.
token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
toktypes.append(gguf.TokenType.USER_DEFINED)
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)

elif "TikTokenTokenizer" in type(tokenizer).__name__:
# TikTokenTokenizer case
vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size) # Use vocab_size attribute
tokens = [tokenizer.decode([i]) for i in range(vocab_size)] # Decode token IDs to strings

# Handle special tokens
special_tokens = tokenizer.special_tokens_map
special_token_set = {v for val in special_tokens.values() for v in (val if isinstance(val, list) else [val])}

for i in range(vocab_size):
token = tokens[i]
if token in special_token_set or self.does_token_look_special(token):
toktypes.append(gguf.TokenType.CONTROL)
elif token.strip() == "" or token.startswith("[PAD") or token.startswith("<|PAD"):
toktypes.append(gguf.TokenType.UNUSED)
else:
toktypes.append(gguf.TokenType.NORMAL)
tokens.append(token)

else:
raise ValueError(f"Unsupported tokenizer type: {type(tokenizer).__name__}")

tokpre = self.get_vocab_base_pre(tokenizer)
return tokens, toktypes, tokpre

# NOTE: this function is generated by convert_hf_to_gguf_update.py
Expand All @@ -579,9 +599,6 @@ def get_vocab_base_pre(self, tokenizer) -> str:
# NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
# or pull the latest version of the model from Huggingface
# don't edit the hashes manually!
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
res = "deepseek-llm"
Expand All @@ -591,12 +608,12 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge"
if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
# ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
res = "falcon3"
if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
# ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
res = "bert-bge-large"
Expand Down Expand Up @@ -624,9 +641,6 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
res = "olmo"
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-base
res = "dbrx"
if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
# ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
res = "jina-v1-en"
Expand All @@ -648,9 +662,6 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
res = "jina-v2-code"
if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
# ref: https://huggingface.co/THUDM/glm-4-9b-chat
res = "chatglm-bpe"
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
# ref: https://huggingface.co/LumiOpen/Viking-7B
res = "viking"
Expand Down Expand Up @@ -678,10 +689,7 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
# ref: https://huggingface.co/microsoft/phi-2
res = "phi-2"
if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
# ref: https://huggingface.co/facebook/chameleon-7b
res = "chameleon"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
if chkhsh == "68fa7e0a33050885cc10a2acfa4df354042188f0afa03b809f7a71c4cde6e373":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
Expand All @@ -699,6 +707,10 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
res = "deepseek-r1-qwen"
if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
# ref: https://huggingface.co/moonshotai/Moonlight-16B-A3B
res = "moonlight-a3b"


if res is None:
logger.warning("\n")
Expand Down