Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 51 additions & 2 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -1608,7 +1608,11 @@ def set_vocab(self):
self._set_vocab_llama_hf()
except (FileNotFoundError, TypeError):
# Llama 3
self._set_vocab_gpt2()
try:
self._set_vocab_gpt2()
except:
logger.warning('Will not set tokenizer for that model. For some models it might be okay, check for this one.')
self.gguf_writer.add_tokenizer_model("none")

# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
if self.hparams.get("vocab_size", 32000) == 32016:
Expand Down Expand Up @@ -1636,12 +1640,21 @@ def set_vocab(self):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "vocab_size" in hparams:
vocab_size = hparams["vocab_size"]
elif "text_vocab_size" in hparams:
vocab_size = hparams["text_vocab_size"]
else:
vocab_size = hparams["audio_vocab_size"]
self.gguf_writer.add_vocab_size(vocab_size)

if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
elif "num_hidden_layers" in hparams:
rope_dim = hparams["num_hidden_layers"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]

self.gguf_writer.add_rope_dimension_count(rope_dim)

if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
Expand Down Expand Up @@ -1702,6 +1715,9 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
else:
return []

if name.find("codebook0_head") or name.find("projection"):
return [(name, data_torch)]

return [(self.map_tensor_name(name), data_torch)]

def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
Expand Down Expand Up @@ -2327,6 +2343,39 @@ def set_gguf_parameters(self):
self.gguf_writer.add_causal_attention(False)


@Model.register("MimiModel")
class MimiDec(Model):
model_arch = gguf.MODEL_ARCH.MIMI_DEC

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused

logger.debug(f"Processing tensor: {name}")

if name.startswith("decoder.") \
or name.startswith("decoder_transformer.") \
or name.startswith("downsample.") \
or name.startswith("encoder.") \
or name.startswith("encoder_transformer.") \
or name.startswith("upsample.") \
or re.match(r"quantizer\..*_residual_vector_quantizer\..*", name):
logger.info(f"{name} -> {data_torch.shape}")
return [(name, data_torch)]

logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")

return [(self.map_tensor_name(name), data_torch)]

def set_vocab(self):
self._set_vocab_none()

def set_gguf_parameters(self):
super().set_gguf_parameters()

self.gguf_writer.add_vocab_size(self.hparams["codebook_size"])
self.gguf_writer.add_group_norm_eps(self.hparams["norm_eps"])


@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE
Expand Down
2 changes: 1 addition & 1 deletion examples/tts/convert_pt_to_hf.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from safetensors.torch import save_file

# default
model_path = './model.pt';
model_path = './model.pt'

# read from CLI
if len(sys.argv) > 1:
Expand Down
2 changes: 1 addition & 1 deletion examples/tts/tts.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -671,7 +671,7 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
{
LOG_INF("%s: constructing prompt ..\n", __func__);

std::vector<llama_token> prompt_inp;
llama_tokens prompt_inp;

prompt_init(prompt_inp, vocab);

Expand Down
11 changes: 10 additions & 1 deletion gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -286,6 +286,7 @@ class MODEL_ARCH(IntEnum):
GRANITE_MOE = auto()
CHAMELEON = auto()
WAVTOKENIZER_DEC = auto()
MIMI_DEC = auto()


class MODEL_TENSOR(IntEnum):
Expand Down Expand Up @@ -488,6 +489,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.MIMI_DEC: "mimi-dec",
}

TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
Expand Down Expand Up @@ -626,7 +628,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.POSNET_ATTN_Q: "posnet.{bid}.attn_q",
MODEL_TENSOR.POSNET_ATTN_K: "posnet.{bid}.attn_k",
MODEL_TENSOR.POSNET_ATTN_V: "posnet.{bid}.attn_v",
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output",
MODEL_TENSOR.POSNET_ATTN_OUT: "posnet.{bid}.attn_output"
}

MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
Expand Down Expand Up @@ -1650,6 +1652,13 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.POSNET_ATTN_V,
MODEL_TENSOR.POSNET_ATTN_OUT,
],
MODEL_ARCH.MIMI_DEC: [ # TODO: check those again
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.TOKEN_EMBD_NORM,
MODEL_TENSOR.CONV1D,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
],
# TODO
}

Expand Down
13 changes: 13 additions & 0 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@ class TensorNameMap:
"shared", # t5
"rwkv.embeddings", # rwkv6
"model.embeddings", # rwkv7
"text_embeddings", # csm
"audio_embeddings", # csm
),

# Token type embeddings
Expand Down Expand Up @@ -66,6 +68,7 @@ class TensorNameMap:
"output_layer", # chatglm
"head", # rwkv
"head.out", # wavtokenizer
"audio_head", # csm
),

# Output norm
Expand All @@ -88,6 +91,7 @@ class TensorNameMap:
"rwkv.ln_out", # rwkv6
"model.ln_out", # rwkv7
"backbone.final_layer_norm", # wavtokenizer
"model.norm.scale", # csm
),

# Rope frequencies
Expand Down Expand Up @@ -129,6 +133,7 @@ class TensorNameMap:
"transformer.layers.{bid}.attn_norm", # openelm
"rwkv.blocks.{bid}.ln1", # rwkv6
"model.layers.{bid}.ln1", # rwkv7
"model.layers.{bid}.sa_norm.scale" # csm
),

# Attention norm 2
Expand Down Expand Up @@ -168,6 +173,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wq", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
"transformer.h.{bid}.attn.attention.q_proj", # exaone
"model.layers.{bid}.attn.q_proj" # csm
),

# Attention key
Expand All @@ -182,6 +188,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wk", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
"transformer.h.{bid}.attn.attention.k_proj", # exaone
"model.layers.{bid}.attn.k_proj" # csm
),

# Attention value
Expand All @@ -195,6 +202,7 @@ class TensorNameMap:
"model.layers.{bid}.attention.wv", # internlm2
"transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
"transformer.h.{bid}.attn.attention.v_proj", # exaone
"model.layers.{bid}.attn.v_proj" # csm
),

# Attention output
Expand All @@ -221,6 +229,7 @@ class TensorNameMap:
"encoder.layers.{bid}.self_attention.dense", # chatglm
"transformer.layers.{bid}.attn.out_proj", # openelm
"transformer.h.{bid}.attn.attention.out_proj", # exaone
"model.layers.{bid}.attn.output_proj" # csm
),

# Attention output norm
Expand Down Expand Up @@ -258,6 +267,7 @@ class TensorNameMap:
"transformer.decoder_layer.{bid}.rms_norm_2", # Grok
"encoder.layers.{bid}.post_attention_layernorm", # chatglm
"transformer.layers.{bid}.ffn_norm", # openelm
"model.layers.{bid}.mlp_norm.scale" # csm
),

# Post feed-forward norm
Expand Down Expand Up @@ -314,6 +324,7 @@ class TensorNameMap:
"model.layers.{bid}.residual_mlp.w3", # arctic
"encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
"transformer.h.{bid}.mlp.c_fc_1", # exaone
"model.layers.{bid}.mlp.w3", # csm
),

MODEL_TENSOR.FFN_UP_EXP: (
Expand Down Expand Up @@ -347,6 +358,7 @@ class TensorNameMap:
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
"transformer.h.{bid}.mlp.c_fc_0", # exaone
"model.layers.{bid}.mlp.w1" # csm
),

MODEL_TENSOR.FFN_GATE_EXP: (
Expand Down Expand Up @@ -388,6 +400,7 @@ class TensorNameMap:
"encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
"encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
"model.layers.h.{bid}.mlp.c_proj", # exaone
"model.layers.{bid}.mlp.w2", # csm
),

MODEL_TENSOR.FFN_DOWN_EXP: (
Expand Down
18 changes: 18 additions & 0 deletions split_hf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from safetensors import safe_open
from safetensors.torch import save_file

safetensors_path = "my-models/csm/model.safetensors"

# Open the original SafeTensors file
with safe_open(safetensors_path, framework="pt", device="cpu") as f:
tensors = {key: f.get_tensor(key) for key in f.keys()}

# Identify tensors belonging to each model
backbone_tensors = {k.replace("backbone.", "model."): v for k, v in tensors.items() if any(x in k for x in ["backbone.", "text_"])}
decoder_tensors = {k.replace("decoder.", "model."): v for k, v in tensors.items() if any(x in k for x in ["decoder.", "audio_", "projection.", "codebook0_head."])}

save_file(backbone_tensors, "backbone.safetensors")
print(f"Saved backbone model with {len(backbone_tensors)} tensors.")

save_file(decoder_tensors, "decoder.safetensors")
print(f"Saved decoder model with {len(decoder_tensors)} tensors.")
Loading