Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions ggml/src/ggml-opencl/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ set(GGML_OPENCL_KERNELS
ggml-opencl_transpose_16
ggml-opencl_transpose_32
ggml-opencl_transpose_32_16
ggml-opencl_im2col
)

foreach (K ${GGML_OPENCL_KERNELS})
Expand Down
238 changes: 231 additions & 7 deletions ggml/src/ggml-opencl/ggml-opencl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -224,12 +224,14 @@ struct ggml_backend_opencl_context {
cl_program program;
cl_program program_1;
cl_program program_2;
cl_program program_im2col;

cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
cl_kernel kernel_relu;
cl_kernel kernel_clamp;
cl_kernel kernel_norm;
Expand All @@ -239,6 +241,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
cl_kernel kernel_mul_mat_f32_f32;
cl_kernel kernel_mul_mat_f16_f16;
Expand All @@ -252,6 +255,7 @@ struct ggml_backend_opencl_context {
kernel_mul_mat_q4_0_f32_flat_img_v0;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;

#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
Expand Down Expand Up @@ -708,6 +712,8 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program, "kernel_gelu_quick", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_quick_4", &err), err));
CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
Expand All @@ -722,6 +728,10 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
Expand Down Expand Up @@ -769,6 +779,19 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {

CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));

// im2col kernels
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_im2col {
#include "ggml-opencl_im2col.cl.h"
};
#else
const std::string kernel_src_im2col = read_file("ggml-opencl_im2col.cl");
#endif
backend_ctx->program_im2col = build_program_from_source(context, device, kernel_src_im2col.c_str(), compile_opts);

CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f32", &err), err));
CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f16", &err), err));

// Kernels for Adreno
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
#ifdef GGML_OPENCL_EMBED_KERNELS
Expand Down Expand Up @@ -1187,6 +1210,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU_QUICK:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
Expand Down Expand Up @@ -1216,14 +1240,26 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->ne[3] == 1;
case GGML_OP_ROPE: {
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope && !is_vision) {
if (op->src[0]->type == GGML_TYPE_F32 ||
op->src[0]->type == GGML_TYPE_F16) {
return true;
}
return false;
}
if (mode & GGML_ROPE_TYPE_VISION) {
if (is_vision) {
if (op->src[0]->type == GGML_TYPE_F32 ||
op->src[0]->type == GGML_TYPE_F16) {
return true;
}
return false;
}
return true;
}
case GGML_OP_IM2COL:
return true;
default:
return false;
}
Expand Down Expand Up @@ -2582,6 +2618,53 @@ static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const
#endif
}

static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);

UNUSED(src1);

ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;

ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;

cl_kernel kernel;

int n = ggml_nelements(dst);

if (n % 4 == 0) {
kernel = backend_ctx->kernel_gelu_quick_4;
n /= 4;
} else {
kernel = backend_ctx->kernel_gelu_quick;
}

CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));

size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};

#ifdef GGML_OPENCL_PROFILING
cl_event evt;
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);

g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
#endif
}

static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
Expand Down Expand Up @@ -3980,36 +4063,70 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
float attn_factor;
float beta_fast;
float beta_slow;
int32_t sections[4];

memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);

const bool is_neox = mode & 2;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;

if (is_mrope) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}

if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}

cl_kernel kernel;

if (!is_neox) {
if (is_neox) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_norm_f32;
kernel = backend_ctx->kernel_rope_neox_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_norm_f16;
kernel = backend_ctx->kernel_rope_neox_f16;
break;
default:
GGML_ASSERT(false);
};
} else if (is_mrope && !is_vision) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_multi_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_multi_f16;
break;
default:
GGML_ASSERT(false);
};
} else if (is_vision) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_vision_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_vision_f16;
break;
default:
GGML_ASSERT(false);
}
} else {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_neox_f32;
kernel = backend_ctx->kernel_rope_norm_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_neox_f16;
kernel = backend_ctx->kernel_rope_norm_f16;
break;
default:
GGML_ASSERT(false);
Expand Down Expand Up @@ -4049,6 +4166,9 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
if (is_mrope || is_vision) {
CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
}

size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
Expand All @@ -4064,6 +4184,98 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
#endif
}

static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);

// src0 - filter, src1 - input
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);

ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;

ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;

cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;

const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];

const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;

const cl_long IC = src1->ne[is_2D ? 2 : 1];
const cl_long IH = is_2D ? src1->ne[1] : 1;
const cl_long IW = src1->ne[0];

const cl_long KH = is_2D ? src0->ne[1] : 1;
const cl_long KW = src0->ne[0];

const cl_long OH = is_2D ? dst->ne[2] : 1;
const cl_long OW = dst->ne[1];

// nb is byte offset, src is type float32
const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
const cl_long batch = src1->ne[is_2D ? 3 : 2];
const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;

const cl_long pelements = OW*KW*KH;
const cl_long CHW = IC*KH*KW;

cl_kernel kernel;

if(dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_im2col_f16;
} else {
kernel = backend_ctx->kernel_im2col_f32;
}

CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));

const int num_blocks = (pelements + 256 - 1) / 256;
size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
size_t local_work_size[] = {256, 1, 1};

#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));

g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}

//------------------------------------------------------------------------------
// Op offloading
//------------------------------------------------------------------------------
Expand Down Expand Up @@ -4122,6 +4334,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_gelu;
break;
case GGML_UNARY_OP_GELU_QUICK:
if (!any_on_device) {
return false;
}
func = ggml_cl_gelu_quick;
break;
case GGML_UNARY_OP_SILU:
if (!any_on_device) {
return false;
Expand Down Expand Up @@ -4194,6 +4412,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_rope;
break;
case GGML_OP_IM2COL:
if (!any_on_device) {
return false;
}
func = ggml_cl_im2col;
break;
default:
return false;
}
Expand Down
Loading
Loading