Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion tools/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -27,11 +27,11 @@ else()
add_subdirectory(run)
add_subdirectory(tokenize)
add_subdirectory(tts)
add_subdirectory(llava)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)
endif()
Expand Down
10 changes: 9 additions & 1 deletion tools/llava/clip.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3382,7 +3382,15 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
GGML_ABORT("Unknown projector type");
}

ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
// ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
if (reg) {
auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
if (ggml_backend_set_n_threads_fn) {
ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
}
}

auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
if (status != GGML_STATUS_SUCCESS) {
Expand Down
6 changes: 5 additions & 1 deletion tools/llava/llava.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
#include "llava.h"

#include "llama.h"
#include "ggml-cpp.h"

#include <algorithm>
#include <cerrno>
Expand Down Expand Up @@ -209,7 +210,10 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten);
ggml_graph_compute_with_ctx(model.ctx, gf, 1);

ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
ggml_backend_graph_compute(backend.get(), gf);

struct ggml_tensor* result = ggml_graph_node(gf, -1);

memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
Expand Down
Loading