Skip to content
Merged
1 change: 1 addition & 0 deletions ggml/src/ggml-cuda/common.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -635,6 +635,7 @@ struct ggml_cuda_device_info {
int nsm; // number of streaming multiprocessors
size_t smpb; // max. shared memory per block
size_t smpbo; // max. shared memory per block (with opt-in)
bool integrated; // Device is integrated as opposed to discrete
bool vmm; // virtual memory support
size_t vmm_granularity; // granularity of virtual memory
size_t total_vram;
Expand Down
20 changes: 14 additions & 6 deletions ggml/src/ggml-cuda/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -243,10 +243,10 @@ static ggml_cuda_device_info ggml_cuda_init() {

info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;

info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
info.devices[id].integrated = prop.integrated;
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
info.devices[id].smpbo = prop.sharedMemPerBlock;

Expand Down Expand Up @@ -1065,6 +1065,10 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
GGML_UNUSED(buft);
}

static bool ggml_backend_buft_is_cuda_host(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
}

static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
}
Expand Down Expand Up @@ -2641,6 +2645,8 @@ static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) {

static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph,
bool & graph_evaluated_or_captured, bool & use_cuda_graph, bool & cuda_graph_update_required) {
//flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;

while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
Expand All @@ -2659,7 +2665,7 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
if (node->src[j] != nullptr) {
assert(node->src[j]->buffer);
assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft) || (integrated && ggml_backend_buft_is_cuda_host(node->src[j]->buffer->buft)));
}
}
#endif
Expand Down Expand Up @@ -3263,7 +3269,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}

static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
const bool integrated = ggml_cuda_info().devices[dev_ctx->device].integrated;
return ((ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft) && buft->device == dev) || (integrated && ggml_backend_buft_is_cuda_host(buft)));
}

static int64_t get_op_batch_size(const ggml_tensor * op) {
Expand Down
Loading