Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 16 additions & 22 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -556,11 +556,8 @@ def set_gguf_parameters(self):
logger.info(f"gguf: experts used count = {n_experts_used}")

if (head_dim := self.hparams.get("head_dim")) is not None:
# Workaround for incorrect AutoConfig value for DeepSeekV3 (is set correctly in DeepSeekV2Model class)
# https://github.com/huggingface/transformers/blob/19224c3642705c5b6988c9f5f4251f83323d05ae/src/transformers/models/deepseek_v3/configuration_deepseek_v3.py#L210
if self.hparams.get("model_type") != "deepseek_v3":
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)
self.gguf_writer.add_key_length(head_dim)
self.gguf_writer.add_value_length(head_dim)

self.gguf_writer.add_file_type(self.ftype)
logger.info(f"gguf: file type = {self.ftype}")
Expand Down Expand Up @@ -1901,9 +1898,7 @@ def set_gguf_parameters(self):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)

Expand Down Expand Up @@ -1985,7 +1980,8 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))

factor = rope_scaling.get("factor", 8.0)
Expand Down Expand Up @@ -2321,9 +2317,7 @@ def set_gguf_parameters(self):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)

Expand Down Expand Up @@ -2363,7 +2357,8 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))

factor = rope_scaling.get("factor", 8.0)
Expand Down Expand Up @@ -3681,9 +3676,7 @@ def set_gguf_parameters(self):
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)

Expand Down Expand Up @@ -5098,9 +5091,7 @@ def set_vocab(self):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]

self.gguf_writer.add_rope_dimension_count(rope_dim)
Expand Down Expand Up @@ -5990,7 +5981,8 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))

factor = rope_scaling.get("factor", 8.0)
Expand Down Expand Up @@ -6102,7 +6094,8 @@ def set_vocab(self):
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
if (rope_dim := hparams.get("head_dim")) is None:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]

self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
Expand Down Expand Up @@ -6134,7 +6127,8 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
n_embd = self.hparams["hidden_size"]
head_dim = self.hparams.get("head_dim") or n_embd // n_head
if (head_dim := self.hparams.get("head_dim")) is None:
head_dim = n_embd // n_head

output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)

Expand Down