Skip to content
31 changes: 24 additions & 7 deletions common/arg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3438,34 +3438,51 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}));

// diffusion parameters
add_opt(common_arg(
{ "--diffusion-steps" }, "N",
string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
[](common_params & params, int value) { params.diffusion.steps = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
params.diffusion.visual_mode ? "true" : "false"),
[](common_params & params) { params.diffusion.visual_mode = true; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));

add_opt(common_arg(
{ "--diffusion-eps" }, "F",
string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
[](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-algorithm" }, "N",
string_format("diffusion algorithm: 0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY (default: %d)",
string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
params.diffusion.algorithm),
[](common_params & params, int value) { params.diffusion.algorithm = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-alg-temp" }, "F",
string_format("algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
[](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));

add_opt(common_arg(
{ "--diffusion-visual" },
string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
params.diffusion.visual_mode ? "true" : "false"),
[](common_params & params) { params.diffusion.visual_mode = true; }
{ "--diffusion-block-length" }, "N",
string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
[](common_params & params, int value) { params.diffusion.block_length = value; }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-cfg-scale" }, "F",
string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
[](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
add_opt(common_arg(
{ "--diffusion-add-gumbel-noise" }, "F",
string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
[](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));


return ctx_arg;
}
16 changes: 11 additions & 5 deletions common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -220,11 +220,17 @@ struct common_params_vocoder {
};

struct common_params_diffusion {
int32_t steps = 64; // number of diffusion steps
float eps = 1e-3f; // epsilon for timesteps
int32_t algorithm = 0; // diffusion algorithm (0=ORIGIN, 1=MASKGIT_PLUS, 2=TOPK_MARGIN, 3=ENTROPY)
float alg_temp = 0.0f; // algorithm temperature
bool visual_mode = false; // show progressive diffusion on screen
int32_t steps = 128;
bool visual_mode = false;

float eps = 0; // epsilon for timesteps
int32_t block_length = 32; // block length for generation

int32_t algorithm = 4; // default algorithm: low-confidence
float alg_temp = 0.0f; // algorithm temperature

float cfg_scale = 0; // classifier-free guidance scale
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
};

enum common_reasoning_format {
Expand Down
101 changes: 101 additions & 0 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -2904,6 +2904,107 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
yield from super().modify_tensors(data_torch, name, bid)


@ModelBase.register("LLaDAModelLM")
class LLaDAModel(TextModel):
model_arch = gguf.MODEL_ARCH.LLADA
undo_permute = True

def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)

vocab_dict = tokenizer.get_vocab()
vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
assert max(vocab_dict.values()) < vocab_size

tokpre = self.get_vocab_base_pre(tokenizer)

reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
added_vocab = tokenizer.get_added_vocab()

for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
# Check if it's a special token - treat special tokens as CONTROL tokens
if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
# Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)

return tokens, toktypes, tokpre

def set_vocab(self):
self._set_vocab_gpt2()

# LLaDA specific parameters
self.gguf_writer.add_add_bos_token(True)

def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()

# Add parameters similar to LlamaModel
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])

if (rope_dim := hparams.get("head_dim")) is None:
n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
self.gguf_writer.add_rope_dimension_count(rope_dim)

# Set context length for LLaDA
context_length = self.hparams.get("max_sequence_length", 4096)
self.gguf_writer.add_context_length(context_length)

# Set embedding length (dimension size)
embedding_length = self.hparams.get("d_model", 4096)
self.gguf_writer.add_embedding_length(embedding_length)

# Set feed forward length (MLP hidden size)
feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
self.gguf_writer.add_feed_forward_length(feed_forward_length)

# LLaDA models use non-causal attention for diffusion, similar to Dream
self.gguf_writer.add_causal_attention(False)

# LLaDA models don't shift their logits
self.gguf_writer.add_diffusion_shift_logits(False)

@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))

if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)

# LLaDA model tensors should be mapped directly since it's the base model
yield from super().modify_tensors(data_torch, name, bid)


@ModelBase.register("Ernie4_5_ForCausalLM")
class Ernie4_5Model(TextModel):
model_arch = gguf.MODEL_ARCH.ERNIE4_5
Expand Down
13 changes: 13 additions & 0 deletions examples/diffusion/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# Diffusion Text Generation

This directory contains implementations for Diffusion LLMs (DLLMs)

More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771


Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`

Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`

Loading
Loading