Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 40 additions & 15 deletions tests/test-opt.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -438,7 +438,6 @@ static std::pair<int, int> test_forward_backward(
float weights;
ggml_backend_tensor_get(cd.weights, &weights, 0, sizeof(float));
const bool subtest_ok = weights == -ndata * .5;
TEST_LOG("%s: ndata=%d weights=%f\n", __func__, (int) ndata, (double) weights);
helper_after_test_forward_backward(optim, __func__, high_level, shuffle, "weights_after_forward_backward", subtest_ok, ntest, npass);
}
{
Expand Down Expand Up @@ -821,11 +820,7 @@ static std::pair<int, int> test_regression(
ggml_backend_tensor_get(b, &b_fit, 0, sizeof(float));
float tol = adamw ? 1e-2 : 5e-2;
const bool aok = almost_equal(a_fit, a_true, tol);
if (!aok)
TEST_LOG("%s: a_fit=%f a_true=%f\n", __func__, (double)a_fit, (double)a_true);
const bool bok = almost_equal(b_fit, b_true, tol);
if (!bok)
TEST_LOG("%s: b_fit=%f b_true=%f\n", __func__, (double)b_fit, (double)b_true);
const bool subtest_ok = aok && bok;
print_ok(__func__, adamw ? subtest_ok : true, npass, ntest, "subtest=weights");
}
Expand Down Expand Up @@ -934,19 +929,49 @@ int main(void) {
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
printf("\n");

if (optim == GGML_OPT_OPTIMIZER_TYPE_SGD && !strcmp(devname, "Vulkan0"))
//TODO: even though backend returns false for currently
// unimplemented sgd op, we still need this
continue;
if (!strcmp(devname, "WebGPU"))
// GGML_OP_SUM implementation missing
continue;
std::pair<int, int> result = test_backend(backend_sched, backends[i], optim);
bool skip;
{
struct ggml_init_params params = {
/*.mem_size =*/ 6*ggml_tensor_overhead(),
/*.mem_buffer =*/ nullptr,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_set_param(a);
ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_tensor * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);

ggml_tensor * t = nullptr;
switch (optim) {
case GGML_OPT_OPTIMIZER_TYPE_ADAMW: {
ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
t = ggml_opt_step_adamw(ctx, a, b, c, d, p);
} break;
case GGML_OPT_OPTIMIZER_TYPE_SGD: {
ggml_tensor * p = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
t = ggml_opt_step_sgd(ctx, a, b, p);
} break;
case GGML_OPT_OPTIMIZER_TYPE_COUNT: {
GGML_ABORT("fatal error");
}
}
skip = !ggml_backend_supports_op(backends[i], t);
ggml_free(ctx);
}

printf(" %d/%d tests passed\n", result.first, result.second);
std::pair<int, int> result;
if (!skip) {
result = test_backend(backend_sched, backends[i], optim);
printf(" %d/%d tests passed\n", result.first, result.second);
}

printf(" Backend %s %s: ", ggml_backend_name(backends[i]), ggml_opt_optimizer_name(optim));
if (result.first == result.second) {
if (skip) {
printf("\033[0;33mSKIPPED\033[0m\n");
n_ok++;
} else if (result.first == result.second) {
printf("\033[1;32mOK\033[0m\n");
n_ok++;
} else {
Expand Down
Loading