-
Notifications
You must be signed in to change notification settings - Fork 13.4k
CUDA: add conv2d #15635
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
CUDA: add conv2d #15635
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
#include "conv2d.cuh" | ||
|
||
struct conv_params { | ||
const int64_t IW, IH; | ||
const int64_t OW, OH; | ||
const int64_t KW, KH; | ||
const int64_t ST_X, ST_Y; | ||
const int64_t PD_X, PD_Y; | ||
const int64_t DL_X, DL_Y; | ||
const int64_t IC, OC; | ||
const int64_t B; | ||
const int64_t TOTAL; | ||
}; | ||
|
||
struct kernel_bounds { | ||
int64_t y_min, y_max; | ||
int64_t x_min, x_max; | ||
}; | ||
|
||
__device__ __forceinline__ int64_t max64(int64_t a, int64_t b) { | ||
return (a > b) ? a : b; | ||
} | ||
|
||
__device__ __forceinline__ int64_t min64(int64_t a, int64_t b) { | ||
return (a < b) ? a : b; | ||
} | ||
|
||
__device__ __forceinline__ kernel_bounds calculate_kernel_bounds(int64_t out_x, int64_t out_y, const conv_params & P) { | ||
kernel_bounds bounds; | ||
bounds.y_min = max64(0, (P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y); | ||
bounds.y_max = min64(P.KH, (P.IH + P.PD_Y - out_y * P.ST_Y + P.DL_Y - 1) / P.DL_Y); | ||
bounds.x_min = max64(0, (P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X); | ||
bounds.x_max = min64(P.KW, (P.IW + P.PD_X - out_x * P.ST_X + P.DL_X - 1) / P.DL_X); | ||
return bounds; | ||
} | ||
|
||
__device__ __forceinline__ int calculate_input_coord(int64_t out_coord, | ||
int64_t kern_coord, | ||
int64_t stride, | ||
int64_t dilation, | ||
int64_t padding) { | ||
return out_coord * stride + kern_coord * dilation - padding; | ||
} | ||
|
||
struct whcn_layout { | ||
__device__ static int64_t input_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) { | ||
return n * (P.IC * P.IW * P.IH) + c * P.IW * P.IH + y * P.IW + x; | ||
} | ||
|
||
__device__ static int64_t kernel_index(int64_t c_out, int64_t c_in, int64_t ky, int64_t kx, const conv_params & P) { | ||
return c_out * (P.IC * P.KH * P.KW) + c_in * (P.KH * P.KW) + ky * P.KW + kx; | ||
} | ||
|
||
__device__ static int64_t output_index(int64_t n, int64_t c, int64_t y, int64_t x, const conv_params & P) { | ||
return n * (P.OC * P.OW * P.OH) + c * P.OW * P.OH + y * P.OW + x; | ||
} | ||
|
||
__device__ static void unpack_indices(int64_t global_idx, | ||
const conv_params & P, | ||
int64_t & n, | ||
int64_t & c, | ||
int64_t & out_y, | ||
int64_t & out_x) { | ||
out_x = global_idx % P.OW; | ||
out_y = (global_idx / P.OW) % P.OH; | ||
c = (global_idx / (P.OW * P.OH)) % P.OC; | ||
n = global_idx / (P.OW * P.OH * P.OC); | ||
} | ||
}; | ||
|
||
template <typename T, typename Layout> | ||
static __global__ void conv2d_kernel(const float * __restrict__ input, | ||
const T * __restrict__ kernel, | ||
float * __restrict__ output, | ||
const conv_params P) { | ||
const int64_t global_idx = blockIdx.x * blockDim.x + threadIdx.x; | ||
|
||
if (global_idx >= P.TOTAL) { | ||
return; | ||
} | ||
|
||
int64_t n, c_out, out_y, out_x; | ||
Layout::unpack_indices(global_idx, P, n, c_out, out_y, out_x); | ||
|
||
T acc = 0; | ||
|
||
for (int64_t c_in = 0; c_in < P.IC; ++c_in) { | ||
kernel_bounds bounds = calculate_kernel_bounds(out_x, out_y, P); | ||
|
||
for (int64_t ky = bounds.y_min; ky < bounds.y_max; ++ky) { | ||
int64_t in_y = calculate_input_coord(out_y, ky, P.ST_Y, P.DL_Y, P.PD_Y); | ||
|
||
for (int64_t kx = bounds.x_min; kx < bounds.x_max; ++kx) { | ||
int64_t in_x = calculate_input_coord(out_x, kx, P.ST_X, P.DL_X, P.PD_X); | ||
mnehete32 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
||
T input_val; | ||
if (std::is_same<T, half>::value) { | ||
input_val = __float2half(input[Layout::input_index(n, c_in, in_y, in_x, P)]); | ||
} else { | ||
input_val = input[Layout::input_index(n, c_in, in_y, in_x, P)]; | ||
} | ||
|
||
T kernel_val = kernel[Layout::kernel_index(c_out, c_in, ky, kx, P)]; | ||
acc += (input_val * kernel_val); | ||
} | ||
} | ||
} | ||
|
||
// [N, OC, OH, OW] | ||
output[Layout::output_index(n, c_out, out_y, out_x, P)] = (float) acc; | ||
} | ||
|
||
template <typename T> | ||
static void conv2d_cuda(const float * X_D, const T * K_D, float * Y_D, const conv_params P, cudaStream_t st) | ||
|
||
{ | ||
mnehete32 marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
const int blocks = (P.TOTAL + CUDA_CONV2D_BLOCK_SIZE - 1) / CUDA_CONV2D_BLOCK_SIZE; | ||
conv2d_kernel<T, whcn_layout><<<blocks, CUDA_CONV2D_BLOCK_SIZE, 0, st>>>(X_D, K_D, Y_D, P); | ||
} | ||
|
||
static void conv2d_cuda_f16(const float * X_D, const half * K_D, float * Y_D, const conv_params P, cudaStream_t st) { | ||
conv2d_cuda<half>(X_D, K_D, Y_D, P, st); | ||
} | ||
|
||
static void conv2d_cuda_f32(const float * X_D, const float * K_D, float * Y_D, const conv_params P, cudaStream_t st) { | ||
conv2d_cuda<float>(X_D, K_D, Y_D, P, st); | ||
} | ||
|
||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | ||
const ggml_tensor * kernel = dst->src[0]; | ||
const ggml_tensor * input = dst->src[1]; | ||
float * K_D = (float *) kernel->data; | ||
const float * X_D = (const float *) input->data; | ||
float * Y_D = (float *) dst->data; | ||
|
||
GGML_ASSERT(ggml_is_contiguous(kernel)); | ||
GGML_ASSERT(kernel->type == GGML_TYPE_F16 || kernel->type == GGML_TYPE_F32); | ||
|
||
// same number of input channels | ||
GGML_ASSERT(input->ne[2] == kernel->ne[2]); | ||
|
||
cudaStream_t st = ctx.stream(); | ||
|
||
const int32_t * p = (const int32_t *) dst->op_params; | ||
const int ST_X = p[0]; // stride_x | ||
const int ST_Y = p[1]; // stride_y | ||
const int PD_X = p[2]; // padding_x | ||
const int PD_Y = p[3]; // padding_y | ||
const int DL_X = p[4]; // dilation_x | ||
const int DL_Y = p[5]; // dilation_y | ||
|
||
// No cwhn | ||
GGML_ASSERT(p[6] == false); | ||
|
||
const int IW = input->ne[0]; // input_w | ||
const int IH = input->ne[1]; // input_h | ||
const int OW = dst->ne[0]; // output_w | ||
const int OH = dst->ne[1]; // output_h | ||
const int KW = kernel->ne[0]; // kernel_w | ||
const int KH = kernel->ne[1]; // kernel_h | ||
const int IC = input->ne[2]; // input_channels | ||
const int OC = kernel->ne[3]; // ouptut_chanles | ||
const int B = input->ne[3]; // n_batches | ||
|
||
const int64_t total = B * OC * OH * OW; | ||
conv_params params = { IW, IH, OW, OH, KW, KH, ST_X, ST_Y, PD_X, PD_Y, DL_X, DL_Y, IC, OC, B, total }; | ||
|
||
if (kernel->type == GGML_TYPE_F16) { | ||
conv2d_cuda_f16(X_D, (half *) K_D, Y_D, params, st); | ||
} else { | ||
conv2d_cuda_f32(X_D, K_D, Y_D, params, st); | ||
} | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
#pragma once | ||
#include "common.cuh" | ||
|
||
#define CUDA_CONV2D_BLOCK_SIZE 256 | ||
void ggml_cuda_op_conv2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst); |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.