Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
185 changes: 30 additions & 155 deletions ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2864,174 +2864,49 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
*/
static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
//dst [M, K, N, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1] -> [D, M, K, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1 -> [D, 1, K, 1]
ggml_tensor * ids = dst->src[2]; //ids [K, N]

GGML_TENSOR_BINARY_OP_LOCALS

// copy index from npu to cpu
int64_t n_as = ne02; // A
int64_t n_ids = ids->ne[0]; // K

std::vector<char> ids_host(ggml_nbytes(ids));
ggml_cann_async_memcpy(ctx, ids_host.data(), ids->data, ggml_nbytes(ids),
ACL_MEMCPY_DEVICE_TO_HOST);
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(dst->ne[3] == 1);

char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
size_t ori_src0_nb[4] = {nb00, nb01, nb02, nb03};
int64_t batch = src1->ne[2];
GGML_ASSERT(batch == ids->ne[1]);

// src0 is F16, src1 is F32, dst is F32
ggml_cann_pool_alloc src0_cast_allocator;
if (src0->type == GGML_TYPE_F16) {
src0_cast_allocator.alloc(ctx.pool(), sizeof(float) * ggml_nelements(src0));
void* src0_cast_buf = src0_cast_allocator.get();
ggml_cann_pool_alloc export_allocator(ctx.pool(), src0->ne[0] * src0->ne[1] * ids->ne[0] * ggml_element_size(src0));
void* export_ptr = export_allocator.get();
for (int64_t i = 0; i < batch; i++) {
aclTensor *select_index = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, i * ids->nb[1]);
aclTensor *export_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3);

size_t cast_nb[GGML_MAX_DIMS];
cast_nb[0] = sizeof(float_t);
for (int i = 1; i < GGML_MAX_DIMS; i++) {
cast_nb[i] = cast_nb[i - 1] * src0->ne[i - 1];
int64_t select_export_ne[] = {src0->ne[0], src0->ne[1], ids->ne[0]};
size_t select_export_nb[3];
select_export_nb[0] = src0->nb[0];
for (int k = 1;k < 3; k++) {
select_export_nb[k] = select_export_nb[k-1] * select_export_ne[k-1];
}

aclTensor* acl_src0_f16 = ggml_cann_create_tensor(src0);
aclTensor* acl_cast = ggml_cann_create_tensor(src0_cast_buf,
ACL_FLOAT, sizeof(float), src0->ne, cast_nb, 4);
GGML_CANN_CALL_ACLNN_OP(ctx, Cast, acl_src0_f16, ACL_FLOAT, acl_cast);
ggml_cann_release_resources(ctx, acl_cast, acl_src0_f16);
aclTensor *select_export = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_export_ne, select_export_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, export_weight, 0, select_index, select_export);

src0_original = (char *) src0_cast_buf;
memcpy(ori_src0_nb, cast_nb, sizeof(ori_src0_nb));
}
int64_t select_transpose_ne[] = {select_export_ne[1], select_export_ne[0], select_export_ne[2]};
size_t select_transpose_nb[] = {select_export_nb[1], select_export_nb[0], select_export_nb[2]};
aclTensor *select_export_transpose = ggml_cann_create_tensor(export_ptr, ggml_cann_type_mapping(src0->type), ggml_element_size(src0), select_transpose_ne, select_transpose_nb, 3);

#ifdef ASCEND_310P
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
int64_t active_tensor_ne[] = {src1->ne[0], 1, src1->ne[1]};
size_t active_tensor_nb[] = {src1->nb[0], src1->nb[1], src1->nb[1]};
aclTensor *active_tensor = ggml_cann_create_tensor(src1, active_tensor_ne, active_tensor_nb, 3, ACL_FORMAT_ND, i * src1->nb[2]);

if (src0->type == GGML_TYPE_F16) {
src0_row.type = GGML_TYPE_F32;
}
int64_t dst_ne[] = {dst->ne[0], 1, dst->ne[1]};
size_t dst_nb[] = {dst->nb[0], dst->nb[1], dst->nb[1]};
aclTensor *acl_dst = ggml_cann_create_tensor(dst, dst_ne,dst_nb, 3, ACL_FORMAT_ND, i * dst->nb[2]);

// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = ori_src0_nb[0];
src0_row.nb[1] = ori_src0_nb[1];
src0_row.nb[2] = ori_src0_nb[1];
src0_row.nb[3] = ori_src0_nb[1];

// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
GGML_CANN_CALL_ACLNN_OP(ctx, BatchMatMul, active_tensor, select_export_transpose, acl_dst, 2);

// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;

//create weight for one row
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);

// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;

int64_t i1 = id;
int64_t i2 = i12;

void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;

src0_row.data = src0_tmp_ptr;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;

ggml_cann_mul_mat(ctx, &dst_row);
}
}
return;
#endif

std::vector<aclTensor*> src0_tensor_vec;
std::vector<aclTensor*> src1_tensor_vec;
std::vector<aclTensor*> dst_tensor_vec;
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// src0_row [M, D] -> weight && permute
int64_t src0_ne[2] = {ne01, ne00};
size_t src0_nb[2] = {ori_src0_nb[1], ori_src0_nb[0]};
// src1_row [D, 1] -> input
int64_t src1_ne[2] = {ne10, 1};
size_t src1_nb[2] = {nb10, nb11};
// dst_row [M, 1] -> out
int64_t dst_ne[2] = {ne0, 1};
size_t dst_nb[2] = {nb0, nb1};

// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);

// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;

int64_t i1 = id;
int64_t i2 = i12;

void* src0_tmp_ptr = src0_original + i02*ori_src0_nb[2];
void* src1_tmp_ptr = src1_original + i11*nb11 + i12*nb12;
void* dst_tmp_ptr = dst_original + i1*nb1 + i2*nb2;

aclTensor* acl_src0 = ggml_cann_create_tensor(src0_tmp_ptr,
ACL_FLOAT, sizeof(float),
src0_ne, src0_nb, 2);
aclTensor* acl_src1 = ggml_cann_create_tensor(src1_tmp_ptr,
ACL_FLOAT, sizeof(float),
src1_ne, src1_nb, 2);
aclTensor* acl_dst = ggml_cann_create_tensor(dst_tmp_ptr,
ACL_FLOAT, sizeof(float),
dst_ne, dst_nb, 2);

src0_tensor_vec.push_back(acl_src0);
src1_tensor_vec.push_back(acl_src1);
dst_tensor_vec.push_back(acl_dst);
}
ggml_cann_release_resources(ctx, select_index, export_weight, select_export, active_tensor, acl_dst, select_export_transpose);
}

size_t GROUP_SIZE = 128;
// GroupedMatmulV3 required tensor_list.size < 128
for (size_t i = 0; i < src0_tensor_vec.size(); i += GROUP_SIZE) {
// split and call GroupedMatmulV3
size_t end = std::min(i + GROUP_SIZE, src0_tensor_vec.size());
std::vector<aclTensor*> src0_tensor_vec_split(src0_tensor_vec.begin() + i, src0_tensor_vec.begin() + end);
std::vector<aclTensor*> src1_tensor_vec_split(src1_tensor_vec.begin() + i, src1_tensor_vec.begin() + end);
std::vector<aclTensor*> dst_tensor_vec_split(dst_tensor_vec.begin() + i, dst_tensor_vec.begin() + end);

aclTensorList* src0_tensor_list = aclCreateTensorList(src0_tensor_vec_split.data(), src0_tensor_vec_split.size());
aclTensorList* src1_tensor_list = aclCreateTensorList(src1_tensor_vec_split.data(), src1_tensor_vec_split.size());
aclTensorList* dst_tensor_list = aclCreateTensorList(dst_tensor_vec_split.data(), dst_tensor_vec_split.size());

GGML_CANN_CALL_ACLNN_OP(ctx, GroupedMatmulV3, src1_tensor_list, src0_tensor_list,
nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, -1, dst_tensor_list);

ggml_cann_release_resources(ctx, src0_tensor_list, src1_tensor_list, dst_tensor_list);
}
return;
}

/**
Expand Down
Loading