Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions ggml/src/ggml-cpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -504,9 +504,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)

# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_COMMIT_TAG "v1.14.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc")

if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
Expand Down Expand Up @@ -583,6 +583,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa_asm.S
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)
Expand Down
186 changes: 116 additions & 70 deletions ggml/src/ggml-cpu/kleidiai/kleidiai.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -87,15 +87,38 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
return tensor->ne[dim];
}

template <typename Variant, typename Ret, typename... Args, std::size_t... Is>
constexpr bool variant_any_invocable_impl(std::index_sequence<Is...>) {
using V = std::remove_reference_t<Variant>;
return (std::is_invocable_r_v<
Ret,
std::variant_alternative_t<Is, V>,
Args...> || ...);
}

template <typename Variant, typename Ret, typename... Args>
constexpr bool variant_any_invocable_v =
variant_any_invocable_impl<Variant, Ret, Args...>(
std::make_index_sequence<
std::variant_size_v<std::remove_reference_t<Variant>>>{});

template<typename Ret, typename Variant, typename... Args>
static Ret variant_call(const Variant & var, Args&&... args) {
return std::visit([&](auto&& func) -> Ret {
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
return func(std::forward<Args>(args)...);
} else {
throw std::runtime_error("Invalid function type in variant_call");
}
}, var);
static inline Ret variant_call(Variant && var, Args&&... args) {
static_assert(variant_any_invocable_v<std::remove_reference_t<Variant>, Ret, Args...>,
"No alternative in Variant is invocable with the provided arguments and return type.");

return std::visit(
[&](auto && f) -> Ret {
using F = std::decay_t<decltype(f)>;
if constexpr (std::is_invocable_r_v<Ret, F, Args...>) {
return std::invoke(std::forward<decltype(f)>(f), std::forward<Args>(args)...);
} else {
GGML_ABORT("Invalid function type in variant_call");
GGML_UNREACHABLE();
}
},
std::forward<Variant>(var)
);
}

namespace ggml::cpu::kleidiai {
Expand Down Expand Up @@ -138,7 +161,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
const int64_t lhs_batch_size0 = op->src[1]->ne[2];
const int64_t rhs_batch_size0 = op->src[0]->ne[2];
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
size = variant_call<size_t>(lhs_info->packed_size, m * r, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
Expand All @@ -148,7 +174,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return true;
}


bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
if (dst->op == GGML_OP_MUL_MAT) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
Expand All @@ -165,8 +190,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}

bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];

Expand All @@ -175,7 +198,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);

bool is_gemv = src1->ne[1] == 1;
const bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
Expand All @@ -185,27 +208,30 @@ class tensor_traits : public ggml::cpu::tensor_traits {

const int64_t lhs_batch_size0 = ne12;
const int64_t rhs_batch_size0 = ne02;
const int64_t batch_size = rhs_batch_size0;
const int64_t batch_size = lhs_batch_size0;

GGML_ASSERT(rhs_batch_size0 > 0);
GGML_ASSERT(lhs_batch_size0 % rhs_batch_size0 == 0);
const int64_t r = lhs_batch_size0 / rhs_batch_size0;

const int64_t m = ne11 * r;
const int64_t n = ne01;
const int64_t k = ne00;
const int64_t m_group = ne11;
const int64_t m = m_group;
const int64_t n = ne01;
const int64_t k = ne00;

const size_t lhs_stride = src1->nb[1];
const size_t rhs_stride = src0->nb[1];
const size_t dst_stride = dst->nb[1];

const int64_t mr = static_cast<int64_t>(kernel->get_mr());
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const int64_t mr = (int64_t) kernel->get_mr();
const int64_t nr = (int64_t) kernel->get_nr();
const int64_t kr = (int64_t) kernel->get_kr();
const int64_t sr = (int64_t) kernel->get_sr();

const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, (size_t)m, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, (size_t)n, (size_t)k);
const size_t kxn_size = (size_t)k * (size_t)n * sizeof(float);
const size_t bias_size = (size_t)n * sizeof(float);

const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
GGML_ASSERT(wsize_required <= params->wsize);
Expand All @@ -216,82 +242,102 @@ class tensor_traits : public ggml::cpu::tensor_traits {
uint8_t * bias = rhs_kxn + kxn_size;

for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
const int64_t rhs_batch_idx = batch_idx / r;
const uint8_t * rhs_batch_base = static_cast<const uint8_t *>(src0->data) + rhs_batch_idx * src0->nb[2];
uint8_t * dst_batch_base = static_cast<uint8_t *>(dst->data) + batch_idx * dst->nb[2];

// LHS packing
// LHS packing (threaded over m, honoring mr alignment and KV groups)
{
const int64_t m_roundup_mr = kai_roundup(m, mr);
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);

if (ith < num_threads) {
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
const int64_t num_m_per_thread0 = round_down((size_t)(m_roundup_mr / num_threads), (size_t)mr);
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;

const int64_t m_start = ith * num_m_per_thread0;
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t m_count = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;

// Base packed offset (aligned) and per-row stride in bytes
const size_t base_packed_off = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)m_start, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t next_block_off = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)(m_start + mr), (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t row_stride_bytes = (next_block_off - base_packed_off) / (size_t)mr;

int64_t remaining = m_count;
int64_t cur = m_start;

while (remaining > 0) {
const int64_t row_in_group = cur;
const int64_t avail = m_group - row_in_group;
const int64_t take = std::min(avail, remaining);

const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
const uint8_t * lhs_batch_base = static_cast<const uint8_t *>(src1->data) + batch_idx * src1->nb[2];
const void * src_ptr = lhs_batch_base + (size_t)row_in_group * lhs_stride;
const size_t dst_off = base_packed_off + (size_t)(cur - m_start) * row_stride_bytes;
void * dst_ptr = lhs_packed + dst_off;

const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
variant_call<void>(lhs_info->pack_func,
(size_t)take, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr,
/*m_idx_start*/ 0, src_ptr, lhs_stride, dst_ptr);

variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
cur += take;
remaining -= take;
}
}
}

// RHS packing
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
// First thread to reach this point handles RHS packing
memset(bias, 0, n * sizeof(float));
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);

variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
// RHS packing (single thread), then synchronize
if (ith == 0) {
memset(bias, 0, (size_t)n * sizeof(float));
transpose_f32kxn_f16nxk((size_t)n, (size_t)k,
reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch_base),
rhs_stride);

variant_call<void>(kernels->rhs_info.pack_func,
/*num_groups*/ 1, (size_t)n, (size_t)k, (size_t)nr, (size_t)kr, (size_t)sr,
/*rhs_stride (bytes)*/ (size_t)(n * sizeof(float)),
rhs_kxn, bias, nullptr, rhs_packed, /*extra_bytes*/ 0, /*params*/ nullptr);
}

ggml_barrier(params->threadpool);

first_to_arrive.clear(std::memory_order_release);

// Perform the matmul
// Matmul (threaded over n)
{
const int64_t m_to_process = m;
const int64_t m_start = 0;

const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
int64_t num_threads = KAI_MIN(n / n_step, nth);
if (num_threads <= 0) {
num_threads = 1;
const int64_t n_step = (int64_t) kernel->get_n_step();
int64_t num_threads_n = KAI_MIN(n / n_step, nth);
if (num_threads_n <= 0) {
num_threads_n = 1;
}

if (ith < num_threads) {
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
if (ith < num_threads_n) {
const int64_t num_n_per_thread0 = round_down((size_t)(n / num_threads_n), (size_t)n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads_n - 1) * num_n_per_thread0;

const int64_t n_start = ith * num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads_n - 1) ? num_n_per_threadN_1 : num_n_per_thread0;

const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
// LHS packed base at row 0 (consistent with packing above)
const size_t lhs_packed_offset0 = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)0, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, (size_t)n_start, (size_t)k);
const size_t dst_offset = kernel->get_dst_offset((size_t)0, (size_t)n_start, dst_stride);

const void * lhs_ptr = lhs_packed + lhs_packed_offset;
const void * lhs_ptr = lhs_packed + lhs_packed_offset0;
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
float * dst_ptr = reinterpret_cast<float *>(dst_batch_base + dst_offset);

variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
variant_call<void>(kernel->run_kernel,
(size_t)m, (size_t)n_to_process, (size_t)k,
lhs_ptr, rhs_ptr,
dst_ptr, dst_stride, sizeof(float),
-FLT_MAX, FLT_MAX);
}
}

if (batch_idx != batch_size - 1) {
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
// the work data buffer (params->wdata) is used as temporary storage which means that only
// a single batch can be processed at any given time. No barrier is needed for the last
// batch since GGML inserts a barrier between the execution of every operator.
ggml_barrier(params->threadpool);
}
}
Expand Down
Loading