-
Notifications
You must be signed in to change notification settings - Fork 13.7k
hparams : add n_embd_inp() to support extended embed #16928
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 3 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -276,8 +276,8 @@ static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w | |
| } break; | ||
| case GGML_OP_IM2COL: | ||
| { | ||
| const int n_embd = hparams.n_embd; | ||
| ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1); | ||
| const int n_embd_inp = hparams.n_embd_inp(); | ||
| ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd_inp, w->ne[1], 1, 1); | ||
|
Collaborator
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I'm unsure if this is correct as well...
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I think either |
||
| op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16); | ||
| } break; | ||
| case GGML_OP_SCALE: | ||
|
|
@@ -1039,9 +1039,6 @@ void llama_model::load_hparams(llama_model_loader & ml) { | |
| case 64: type = LLM_TYPE_32B; break; | ||
| default: type = LLM_TYPE_UNKNOWN; | ||
| } | ||
| // since vision model stacks deepstack features along feature dim | ||
| // we also create a fake "n_embd" for text model to be the main embd + deepstack embds | ||
| hparams.n_embd *= hparams.n_deepstack_layers + 1; | ||
| } break; | ||
| case LLM_ARCH_QWEN3MOE: | ||
| { | ||
|
|
@@ -1065,9 +1062,6 @@ void llama_model::load_hparams(llama_model_loader & ml) { | |
| case 94: type = LLM_TYPE_235B_A22B; break; | ||
| default: type = LLM_TYPE_UNKNOWN; | ||
| } | ||
| // since vision model stacks deepstack features along feature dim | ||
| // we also create a fake "n_embd" for text model to be the main embd + deepstack embds | ||
| hparams.n_embd *= hparams.n_deepstack_layers + 1; | ||
| } break; | ||
| case LLM_ARCH_PHI2: | ||
| { | ||
|
|
@@ -3332,10 +3326,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) { | |
| case LLM_ARCH_QWEN3: | ||
| case LLM_ARCH_QWEN3VL: | ||
| { | ||
| // for model loading, the weights only have the main embd | ||
| // so we need to divide by the number of deepstack layers + 1 | ||
| // n_embd is const int so we declare a new variable | ||
| int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1); | ||
| tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); | ||
|
|
||
| // output | ||
|
|
@@ -3371,10 +3361,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) { | |
| case LLM_ARCH_QWEN3MOE: | ||
| case LLM_ARCH_QWEN3VLMOE: | ||
| { | ||
| // for model loading, the weights only have the main embd | ||
| // so we need to divide by the number of deepstack layers + 1 | ||
| // n_embd is const int so we declare a new variable | ||
| int64_t n_embd = hparams.n_embd / (hparams.n_deepstack_layers + 1); | ||
| tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); | ||
|
|
||
| // output | ||
|
|
@@ -6482,6 +6468,7 @@ void llama_model::print_info() const { | |
| if (!hparams.vocab_only) { | ||
| LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); | ||
| LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); | ||
| LLAMA_LOG_INFO("%s: n_embd_inp = %u\n", __func__, hparams.n_embd_inp()); | ||
| LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); | ||
| LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str()); | ||
| LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str()); | ||
|
|
@@ -6681,8 +6668,9 @@ ggml_backend_buffer_type_t llama_model::select_buft(int il) const { | |
| return ::select_buft( | ||
| *pimpl->dev_layer.at(il).buft_list, | ||
| [&](ggml_context * ctx) { | ||
| ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); | ||
| ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd); | ||
| const int n_embd_inp = hparams.n_embd_inp(); | ||
| ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd_inp); | ||
| ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd_inp); | ||
CISC marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| return ggml_add(ctx, cur, layer_dir); | ||
| }); | ||
| } | ||
|
|
@@ -7329,6 +7317,10 @@ int32_t llama_model_n_embd(const llama_model * model) { | |
| return model->hparams.n_embd; | ||
| } | ||
|
|
||
| int32_t llama_model_n_embd_inp(const llama_model * model) { | ||
| return model->hparams.n_embd_inp(); | ||
| } | ||
|
|
||
| int32_t llama_model_n_layer(const llama_model * model) { | ||
| return model->hparams.n_layer; | ||
| } | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.