Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 33 additions & 28 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from pathlib import Path
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
from itertools import chain

import math
import numpy as np
Expand Down Expand Up @@ -64,15 +65,14 @@ class Model:
model_name: str | None
metadata_override: Path | None
dir_model_card: Path
is_lora: bool

# subclasses should define this!
model_arch: gguf.MODEL_ARCH

def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")

Expand All @@ -94,7 +94,6 @@ def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path,
self.metadata_override = metadata_override
self.model_name = model_name
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py

# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
if self.ftype == gguf.LlamaFileType.GUESSED:
Expand Down Expand Up @@ -270,10 +269,14 @@ def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims:

return False

# some models need extra generated tensors (like rope_freqs)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
return ()

def prepare_tensors(self):
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")

for name, data_torch in self.get_tensors():
for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
Expand Down Expand Up @@ -1617,7 +1620,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter

return [(self.map_tensor_name(name), data_torch)]

def prepare_tensors(self):
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
Expand All @@ -1644,9 +1647,9 @@ def prepare_tensors(self):
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))

if not self.is_lora:
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))

def prepare_tensors(self):
super().prepare_tensors()

if self._experts is not None:
Expand Down Expand Up @@ -1870,8 +1873,6 @@ class MiniCPM3Model(Model):
def set_gguf_parameters(self):
hparams = self.hparams

rope_dims = hparams["qk_rope_head_dim"]

self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
Expand All @@ -1887,24 +1888,25 @@ def set_gguf_parameters(self):
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])

def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
rope_scaling = self.find_hparam(['rope_scaling'], True)
if rope_scaling is None:
return
if rope_scaling is not None:
rope_dims = self.hparams["qk_rope_head_dim"]

long_factors = rope_scaling.get('long_factor', None)
short_factors = rope_scaling.get('short_factor', None)
long_factors = rope_scaling.get('long_factor', None)
short_factors = rope_scaling.get('short_factor', None)

if long_factors is None or short_factors is None:
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
if long_factors is None or short_factors is None:
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')

if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')

self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))

def set_vocab(self):
self._set_vocab_llama_hf()
self._set_vocab_sentencepiece()

def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
Expand Down Expand Up @@ -2216,6 +2218,13 @@ def set_gguf_parameters(self):
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))

def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
n_embd = self.find_hparam(["hidden_size", "n_embd"])
n_head = self.find_hparam(["num_attention_heads", "n_head"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head

# write rope scaling for long context (128k) model
rope_scaling = self.find_hparam(['rope_scaling'], True)
if rope_scaling is None:
Expand Down Expand Up @@ -2245,9 +2254,8 @@ def set_gguf_parameters(self):
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')

if not self.is_lora:
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))


@Model.register("PlamoForCausalLM")
Expand Down Expand Up @@ -4071,7 +4079,7 @@ def set_gguf_parameters(self):
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])

def prepare_tensors(self):
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
Expand All @@ -4098,10 +4106,7 @@ def prepare_tensors(self):
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))

if not self.is_lora:
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))

super().prepare_tensors()
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))


@Model.register("GraniteForCausalLM")
Expand Down
5 changes: 4 additions & 1 deletion convert_lora_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,10 @@ def set_gguf_parameters(self):
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
super().set_gguf_parameters()

def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters
return ()

def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_map: dict[str, PartialLoraTensor] = {}

Expand Down Expand Up @@ -392,7 +396,6 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
is_lora=True,
)

logger.info("Exporting model...")
Expand Down
4 changes: 4 additions & 0 deletions gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -814,6 +814,8 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_Q,
Expand Down Expand Up @@ -892,6 +894,8 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FACTORS_LONG,
MODEL_TENSOR.ROPE_FACTORS_SHORT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
Expand Down
3 changes: 3 additions & 0 deletions gguf-py/gguf/tensor_mapping.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,9 @@ class TensorNameMap:
"rope.freqs", # llama-pth
"rotary_pos_emb.inv_freq", # chatglm
),

MODEL_TENSOR.ROPE_FACTORS_LONG: (),
MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
}

block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
Expand Down
Loading