Skip to content
Closed
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 31 additions & 20 deletions convert_lora_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,28 +338,39 @@ def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_map: dict[str, PartialLoraTensor] = {}

# The following edits will enable conversion for: SFTTrainer checkpoint adapter models and other adapter models that contain weights besides LoRA weights

# Here, we first get the items with the 'lora_' substring
lora_model_items_name = [name for name,_ in lora_model.items()]
lora_model_items_with_lora_tensors = [name for name in lora_model_items_name if 'lora_' in name]

for name, tensor in lora_model.items():
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
sys.exit(1)

if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
else:
tensor_map[base_name].B = tensor
else:
if is_lora_a:
tensor_map[base_name] = PartialLoraTensor(A=tensor)

# Check for only LoRA finetuned weights and base layer weights
if (name in lora_model_items_with_lora_tensors) or (".base_layer.weight" in name):
if self.lazy:
tensor = LazyTorchTensor.from_eager(tensor)
base_name = get_base_tensor_name(name)
is_lora_a = ".lora_A.weight" in name
is_lora_b = ".lora_B.weight" in name
if not is_lora_a and not is_lora_b:
if ".base_layer.weight" in name:
continue

# we will either have a lora weight or a base layer weight, this error becomes trivial
# logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
# sys.exit(1)

if base_name in tensor_map:
if is_lora_a:
tensor_map[base_name].A = tensor
else:
tensor_map[base_name].B = tensor
else:
tensor_map[base_name] = PartialLoraTensor(B=tensor)
if is_lora_a:
tensor_map[base_name] = PartialLoraTensor(A=tensor)
else:
tensor_map[base_name] = PartialLoraTensor(B=tensor)

for name, tensor in tensor_map.items():
assert tensor.A is not None
Expand Down