Skip to content
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 24 additions & 15 deletions examples/perplexity/perplexity.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
#include <cstdio>
#include <cstring>
#include <ctime>
#include <cinttypes>
#include <fstream>
#include <mutex>
#include <random>
Expand Down Expand Up @@ -103,7 +104,7 @@ static std::vector<float> softmax(const std::vector<float>& logits) {
return probs;
}

static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
static results_log_softmax log_softmax(int64_t n_vocab, const float * logits, int tok) {
float max_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
max_logit = std::max(max_logit, logits[i]);
Expand All @@ -122,7 +123,7 @@ static inline int nearest_int(float fval) {
return (i & 0x007fffff) - 0x00400000;
}

static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) {
static double log_softmax(int64_t n_vocab, const float * logits, uint16_t * log_prob, int tok) {
float max_logit = logits[0];
float min_logit = logits[0];
for (int i = 1; i < n_vocab; ++i) {
Expand Down Expand Up @@ -153,7 +154,7 @@ static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob
}

static void process_logits(
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
int64_t n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
double & nll, double & nll2, float * logit_history, float * prob_history
) {
std::mutex mutex;
Expand Down Expand Up @@ -187,7 +188,7 @@ static void process_logits(
}
}

static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token,
static void process_logits(std::ostream& out, int64_t n_vocab, const float * logits, const int * tokens, int n_token,
std::vector<std::thread> & workers, std::vector<uint16_t> & log_probs, double & nll, double & nll2) {
std::mutex mutex;
const int nv = 2*((n_vocab + 1)/2) + 4;
Expand Down Expand Up @@ -234,7 +235,7 @@ struct kl_divergence_result {
size_t count = 0.0;
};

static std::pair<double, float> log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
static std::pair<double, float> log_softmax(int64_t n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) {
float max_logit = logits[0];
int imax = 0;
for (int i = 1; i < n_vocab; ++i) {
Expand Down Expand Up @@ -281,7 +282,9 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
kld.sum_kld += sum;
kld.sum_kld2 += sum*sum;
++kld.count;
if (imax == imax_base) ++kld.n_same_top;
if (imax == imax_base) {
++kld.n_same_top;
}

const float p_base = expf(-nll_base);
const float p = expf(-nll);
Expand All @@ -295,7 +298,7 @@ static std::pair<double, float> log_softmax(int n_vocab, const float * logits, c
return std::make_pair(sum, p_diff);
}

static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token,
static void process_logits(int64_t n_vocab, const float * logits, const int * tokens, int n_token,
std::vector<std::thread> & workers, const std::vector<uint16_t> & base_log_probs, kl_divergence_result & kld,
float * kld_values, float * p_diff_values) {
std::mutex mutex;
Expand Down Expand Up @@ -383,9 +386,10 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;

const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_batch = params.n_batch;

const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx));

int count = 0;
double nll = 0.0;

Expand Down Expand Up @@ -521,9 +525,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
const int n_chunk_max = tokens.size() / n_ctx;

const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_batch = params.n_batch;

const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx));

int count = 0;
double nll = 0.0;
double nll2 = 0.0;
Expand Down Expand Up @@ -723,7 +728,7 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector<

#define K_TOKEN_CHUNK 4

static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector<std::thread>& workers,
static void compute_logprobs(const float * batch_logits, int64_t n_vocab, std::vector<std::thread>& workers,
const std::vector<std::pair<size_t, llama_token>>& eval_pairs, std::vector<float>& eval_results) {
if (eval_results.size() != eval_pairs.size()) {
eval_results.resize(eval_pairs.size());
Expand Down Expand Up @@ -877,10 +882,11 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {

double acc = 0.0f;

const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;

const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx));

const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

Expand Down Expand Up @@ -1158,10 +1164,11 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) {

LOG_INF("%s : calculating winogrande score over selected tasks.\n", __func__);

const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;

const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx));

const int max_tasks_per_batch = 128;
const int max_seq = std::min(2*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

Expand Down Expand Up @@ -1509,10 +1516,11 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params

LOG("\ntask\tacc_norm\n");

const int n_vocab = llama_n_vocab(llama_get_model(ctx));
const int n_ctx = llama_n_ctx(ctx);
const int n_batch = params.n_batch;

const int64_t n_vocab = llama_n_vocab(llama_get_model(ctx));

const int max_tasks_per_batch = 32;
const int max_seq = std::min(4*max_tasks_per_batch, (int) llama_n_seq_max(ctx));

Expand Down Expand Up @@ -1709,15 +1717,16 @@ static void kl_divergence(llama_context * ctx, const gpt_params & params) {
__func__, params.logits_file.c_str(), n_ctx, params.n_ctx);
}

int n_vocab, n_chunk;
int64_t n_vocab;
int64_t n_chunk;
in.read((char *)&n_vocab, sizeof(n_vocab));
in.read((char *)&n_chunk, sizeof(n_chunk));
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Using int64_t here is for n_chunk was incorrect. Pushing a fix

if (in.fail()) {
LOG_ERR("%s: failed reading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str());
return;
}
if (n_vocab != llama_n_vocab(llama_get_model(ctx))) {
LOG_ERR("%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
LOG_ERR("%s: inconsistent vocabulary (%" PRId64 " vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx)));
}

std::vector<llama_token> tokens(n_ctx * n_chunk);
Expand Down
Loading