Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion cookbook/copilot-sdk/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t

### .NET (C#)

- [Ralph Loop](dotnet/ralph-loop.md): Build autonomous AI coding loops with fresh context per iteration, planning/building modes, and backpressure.
- [Error Handling](dotnet/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](dotnet/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](dotnet/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
Expand All @@ -14,6 +15,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t

### Node.js / TypeScript

- [Ralph Loop](nodejs/ralph-loop.md): Build autonomous AI coding loops with fresh context per iteration, planning/building modes, and backpressure.
- [Error Handling](nodejs/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](nodejs/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](nodejs/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
Expand All @@ -22,6 +24,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t

### Python

- [Ralph Loop](python/ralph-loop.md): Build autonomous AI coding loops with fresh context per iteration, planning/building modes, and backpressure.
- [Error Handling](python/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](python/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](python/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
Expand All @@ -30,6 +33,7 @@ This cookbook collects small, focused recipes showing how to accomplish common t

### Go

- [Ralph Loop](go/ralph-loop.md): Build autonomous AI coding loops with fresh context per iteration, planning/building modes, and backpressure.
- [Error Handling](go/error-handling.md): Handle errors gracefully including connection failures, timeouts, and cleanup.
- [Multiple Sessions](go/multiple-sessions.md): Manage multiple independent conversations simultaneously.
- [Managing Local Files](go/managing-local-files.md): Organize files by metadata using AI-powered grouping strategies.
Expand Down Expand Up @@ -83,4 +87,4 @@ go run <filename>.go

## Status

Cookbook structure is complete with 4 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples.
Cookbook structure is complete with 6 recipes across all 4 supported languages. Each recipe includes both markdown documentation and runnable examples.
260 changes: 260 additions & 0 deletions cookbook/copilot-sdk/dotnet/ralph-loop.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
# Ralph Loop: Autonomous AI Task Loops

Build autonomous coding loops where an AI agent picks tasks, implements them, validates against backpressure (tests, builds), commits, and repeats — each iteration in a fresh context window.

> **Runnable example:** [recipe/ralph-loop.cs](recipe/ralph-loop.cs)
>
> ```bash
> cd dotnet
> dotnet run recipe/ralph-loop.cs
> ```

## What is a Ralph Loop?

A [Ralph loop](https://ghuntley.com/ralph/) is an autonomous development workflow where an AI agent iterates through tasks in isolated context windows. The key insight: **state lives on disk, not in the model's context**. Each iteration starts fresh, reads the current state from files, does one task, writes results back to disk, and exits.

```
┌─────────────────────────────────────────────────┐
│ loop.sh │
│ while true: │
│ ┌─────────────────────────────────────────┐ │
│ │ Fresh session (isolated context) │ │
│ │ │ │
│ │ 1. Read PROMPT.md + AGENTS.md │ │
│ │ 2. Study specs/* and code │ │
│ │ 3. Pick next task from plan │ │
│ │ 4. Implement + run tests │ │
│ │ 5. Update plan, commit, exit │ │
│ └─────────────────────────────────────────┘ │
│ ↻ next iteration (fresh context) │
└─────────────────────────────────────────────────┘
```

**Core principles:**

- **Fresh context per iteration**: Each loop creates a new session — no context accumulation, always in the "smart zone"
- **Disk as shared state**: `IMPLEMENTATION_PLAN.md` persists between iterations and acts as the coordination mechanism
- **Backpressure steers quality**: Tests, builds, and lints reject bad work — the agent must fix issues before committing
- **Two modes**: PLANNING (gap analysis → generate plan) and BUILDING (implement from plan)

## Simple Version

The minimal Ralph loop — the SDK equivalent of `while :; do cat PROMPT.md | copilot ; done`:

```csharp
using GitHub.Copilot.SDK;

var client = new CopilotClient();
await client.StartAsync();

try
{
var prompt = await File.ReadAllTextAsync("PROMPT.md");
var maxIterations = 50;

for (var i = 1; i <= maxIterations; i++)
{
Console.WriteLine($"\n=== Iteration {i}/{maxIterations} ===");

// Fresh session each iteration — context isolation is the point
var session = await client.CreateSessionAsync(
new SessionConfig { Model = "gpt-5.1-codex-mini" });
try
{
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
if (evt is AssistantMessageEvent msg)
done.TrySetResult(msg.Data.Content);
});

await session.SendAsync(new MessageOptions { Prompt = prompt });
await done.Task;
}
finally
{
await session.DisposeAsync();
}

Console.WriteLine($"Iteration {i} complete.");
}
}
finally
{
await client.StopAsync();
}
```

This is all you need to get started. The prompt file tells the agent what to do; the agent reads project files, does work, commits, and exits. The loop restarts with a clean slate.

## Ideal Version

The full Ralph pattern with planning and building modes, matching the [Ralph Playbook](https://github.com/ClaytonFarr/ralph-playbook) architecture:

```csharp
using GitHub.Copilot.SDK;

// Parse args: dotnet run [plan] [max_iterations]
var mode = args.Contains("plan") ? "plan" : "build";
var maxArg = args.FirstOrDefault(a => int.TryParse(a, out _));
var maxIterations = maxArg != null ? int.Parse(maxArg) : 50;
var promptFile = mode == "plan" ? "PROMPT_plan.md" : "PROMPT_build.md";

var client = new CopilotClient();
await client.StartAsync();

Console.WriteLine(new string('━', 40));
Console.WriteLine($"Mode: {mode}");
Console.WriteLine($"Prompt: {promptFile}");
Console.WriteLine($"Max: {maxIterations} iterations");
Console.WriteLine(new string('━', 40));

try
{
var prompt = await File.ReadAllTextAsync(promptFile);

for (var i = 1; i <= maxIterations; i++)
{
Console.WriteLine($"\n=== Iteration {i}/{maxIterations} ===");

// Fresh session — each task gets full context budget
var session = await client.CreateSessionAsync(
new SessionConfig
{
Model = "gpt-5.1-codex-mini",
// Pin the agent to the project directory
WorkingDirectory = Environment.CurrentDirectory,
// Auto-approve tool calls for unattended operation
OnPermissionRequest = (_, _) => Task.FromResult(
new PermissionRequestResult { Kind = "approved" }),
});
try
{
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
// Log tool usage for visibility
if (evt is ToolExecutionStartEvent toolStart)
Console.WriteLine($" ⚙ {toolStart.Data.ToolName}");
else if (evt is AssistantMessageEvent msg)
done.TrySetResult(msg.Data.Content);
});

await session.SendAsync(new MessageOptions { Prompt = prompt });
await done.Task;
}
finally
{
await session.DisposeAsync();
}

Console.WriteLine($"\nIteration {i} complete.");
}

Console.WriteLine($"\nReached max iterations: {maxIterations}");
}
finally
{
await client.StopAsync();
}
```

### Required Project Files

The ideal version expects this file structure in your project:

```
project-root/
├── PROMPT_plan.md # Planning mode instructions
├── PROMPT_build.md # Building mode instructions
├── AGENTS.md # Operational guide (build/test commands)
├── IMPLEMENTATION_PLAN.md # Task list (generated by planning mode)
├── specs/ # Requirement specs (one per topic)
│ ├── auth.md
│ └── data-pipeline.md
└── src/ # Your source code
```

### Example `PROMPT_plan.md`

```markdown
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md (if present) to understand the plan so far.
0c. Study `src/` to understand existing code and shared utilities.

1. Compare specs against code (gap analysis). Create or update
IMPLEMENTATION_PLAN.md as a prioritized bullet-point list of tasks
yet to be implemented. Do NOT implement anything.

IMPORTANT: Do NOT assume functionality is missing — search the
codebase first to confirm. Prefer updating existing utilities over
creating ad-hoc copies.
```

### Example `PROMPT_build.md`

```markdown
0a. Study `specs/*` to learn the application specifications.
0b. Study IMPLEMENTATION_PLAN.md.
0c. Study `src/` for reference.

1. Choose the most important item from IMPLEMENTATION_PLAN.md. Before
making changes, search the codebase (don't assume not implemented).
2. After implementing, run the tests. If functionality is missing, add it.
3. When you discover issues, update IMPLEMENTATION_PLAN.md immediately.
4. When tests pass, update IMPLEMENTATION_PLAN.md, then `git add -A`
then `git commit` with a descriptive message.

5. When authoring documentation, capture the why.
6. Implement completely. No placeholders or stubs.
7. Keep IMPLEMENTATION_PLAN.md current — future iterations depend on it.
```

### Example `AGENTS.md`

Keep this brief (~60 lines). It's loaded every iteration, so bloat wastes context.

```markdown
## Build & Run

dotnet build

## Validation

- Tests: `dotnet test`
- Build: `dotnet build --no-restore`
```

## Best Practices

1. **Fresh context per iteration**: Never accumulate context across iterations — that's the whole point
2. **Disk is your database**: `IMPLEMENTATION_PLAN.md` is shared state between isolated sessions
3. **Backpressure is essential**: Tests, builds, lints in `AGENTS.md` — the agent must pass them before committing
4. **Start with PLANNING mode**: Generate the plan first, then switch to BUILDING
5. **Observe and tune**: Watch early iterations, add guardrails to prompts when the agent fails in specific ways
6. **The plan is disposable**: If the agent goes off track, delete `IMPLEMENTATION_PLAN.md` and re-plan
7. **Keep `AGENTS.md` brief**: It's loaded every iteration — operational info only, no progress notes
8. **Use a sandbox**: The agent runs autonomously with full tool access — isolate it
9. **Set `WorkingDirectory`**: Pin the session to your project root so tool operations resolve paths correctly
10. **Auto-approve permissions**: Use `OnPermissionRequest` to allow tool calls without interrupting the loop

## When to Use a Ralph Loop

**Good for:**

- Implementing features from specs with test-driven validation
- Large refactors broken into many small tasks
- Unattended, long-running development with clear requirements
- Any work where backpressure (tests/builds) can verify correctness

**Not good for:**

- Tasks requiring human judgment mid-loop
- One-shot operations that don't benefit from iteration
- Vague requirements without testable acceptance criteria
- Exploratory prototyping where direction isn't clear

## See Also

- [Error Handling](error-handling.md) — timeout patterns and graceful shutdown for long-running sessions
- [Persisting Sessions](persisting-sessions.md) — save and resume sessions across restarts
83 changes: 83 additions & 0 deletions cookbook/copilot-sdk/dotnet/recipe/ralph-loop.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
#:package GitHub.Copilot.SDK@*

using GitHub.Copilot.SDK;

// Ralph loop: autonomous AI task loop with fresh context per iteration.
//
// Two modes:
// - "plan": reads PROMPT_plan.md, generates/updates IMPLEMENTATION_PLAN.md
// - "build": reads PROMPT_build.md, implements tasks, runs tests, commits
//
// Each iteration creates a fresh session so the agent always operates in
// the "smart zone" of its context window. State is shared between
// iterations via files on disk (IMPLEMENTATION_PLAN.md, AGENTS.md, specs/*).
//
// Usage:
// dotnet run # build mode, 50 iterations
// dotnet run plan # planning mode
// dotnet run 20 # build mode, 20 iterations
// dotnet run plan 5 # planning mode, 5 iterations

var mode = args.Contains("plan") ? "plan" : "build";
var maxArg = args.FirstOrDefault(a => int.TryParse(a, out _));
var maxIterations = maxArg != null ? int.Parse(maxArg) : 50;
var promptFile = mode == "plan" ? "PROMPT_plan.md" : "PROMPT_build.md";

var client = new CopilotClient();
await client.StartAsync();

Console.WriteLine(new string('━', 40));
Console.WriteLine($"Mode: {mode}");
Console.WriteLine($"Prompt: {promptFile}");
Console.WriteLine($"Max: {maxIterations} iterations");
Console.WriteLine(new string('━', 40));

try
{
var prompt = await File.ReadAllTextAsync(promptFile);

for (var i = 1; i <= maxIterations; i++)
{
Console.WriteLine($"\n=== Iteration {i}/{maxIterations} ===");

// Fresh session — each task gets full context budget
var session = await client.CreateSessionAsync(
new SessionConfig
{
Model = "gpt-5.1-codex-mini",
// Pin the agent to the project directory
WorkingDirectory = Environment.CurrentDirectory,
// Auto-approve tool calls for unattended operation
OnPermissionRequest = (_, _) => Task.FromResult(
new PermissionRequestResult { Kind = "approved" }),
});

try
{
var done = new TaskCompletionSource<string>();
session.On(evt =>
{
// Log tool usage for visibility
if (evt is ToolExecutionStartEvent toolStart)
Console.WriteLine($" ⚙ {toolStart.Data.ToolName}");
else if (evt is AssistantMessageEvent msg)
done.TrySetResult(msg.Data.Content);
});

await session.SendAsync(new MessageOptions { Prompt = prompt });
await done.Task;
}
finally
{
await session.DisposeAsync();
}

Console.WriteLine($"\nIteration {i} complete.");
}

Console.WriteLine($"\nReached max iterations: {maxIterations}");
}
finally
{
await client.StopAsync();
}
Loading