Skip to content

Create Test #614

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
351 changes: 351 additions & 0 deletions notebooks/Test
Original file line number Diff line number Diff line change
@@ -0,0 +1,351 @@
#!/usr/bin/env python3
# trading_setup.py
import os, math, warnings
from dataclasses import dataclass
from typing import List, Optional, Dict
import numpy as np
import pandas as pd
import yfinance as yf
import ta
from scipy.stats import rankdata

warnings.filterwarnings("ignore", category=FutureWarning)

# ---------------------------
# Config
# ---------------------------
DEFAULT_LOOKBACK_YEARS = 2
MIN_HISTORY_DAYS = 252
MOM_WINDOW_DAYS = {"1m":21, "3m":63, "6m":126, "12m":252}
TECH_EMAS = (20, 50, 200)
WEIGHTS = {
"technical_flow": 0.35,
"options_sentiment": 0.20,
"dark_pool": 0.15,
"momentum": 0.20,
"growth": 0.10,
}

# ---------------------------
# Utils
# ---------------------------
def winsorize_series(s: pd.Series, p: float = 0.01) -> pd.Series:
if s.dropna().empty: return s
lo, hi = s.quantile(p), s.quantile(1-p)
return s.clip(lower=lo, upper=hi)

def scale_0_100(s: pd.Series) -> pd.Series:
if s.dropna().nunique() <= 1:
return pd.Series(50.0, index=s.index) # flat middle if no variance
s_w = winsorize_series(s)
lo, hi = s_w.min(), s_w.max()
return (100*(s_w - lo)/(hi - lo)).astype(float)

def pct_change(df: pd.DataFrame, col="Adj Close", window=21) -> float:
if len(df) < window+1: return np.nan
return df[col].iloc[-1] / df[col].iloc[-1-window] - 1.0

def safe_div(a, b):
try:
return a / b if b and not np.isnan(b) else np.nan
except ZeroDivisionError:
return np.nan

# ---------------------------
# Data classes
# ---------------------------
@dataclass
class DarkPoolRecord:
ticker: str
dp_net_flow: Optional[float] = None
dp_score: Optional[float] = None # if already 0-100

@dataclass
class FundamentalsRecord:
ticker: str
revenue_yoy: Optional[float] = None
eps_yoy: Optional[float] = None

# ---------------------------
# Fetchers
# ---------------------------
def fetch_price_history(ticker: str, years: int = DEFAULT_LOOKBACK_YEARS) -> Optional[pd.DataFrame]:
try:
df = yf.Ticker(ticker).history(period=f"{years}y", auto_adjust=False)
if df is None or df.empty or len(df) < MIN_HISTORY_DAYS//2:
return None
return df
except Exception:
return None

def fetch_option_chain_put_call_ratio(ticker: str) -> Optional[float]:
"""
Basic net options sentiment via Put/Call volume ratio (lower = bullish).
Returns PCR; we'll map to a 0-100 bullish score later.
"""
try:
tk = yf.Ticker(ticker)
exps = tk.options
if not exps: return None
# choose nearest non-expired expiration
exp = exps[0]
chain = tk.option_chain(exp)
calls, puts = chain.calls, chain.puts
if calls is None or puts is None or calls.empty or puts.empty:
return None
call_vol = calls["volume"].replace(0, np.nan).sum(skipna=True)
put_vol = puts["volume"].replace(0, np.nan).sum(skipna=True)
pcr = safe_div(put_vol, call_vol)
return float(pcr) if pcr is not None else None
except Exception:
return None

def load_dark_pool_csv(path: str) -> Dict[str, DarkPoolRecord]:
if not path or not os.path.exists(path): return {}
df = pd.read_csv(path)
out = {}
for _, r in df.iterrows():
out[str(r["ticker"]).upper()] = DarkPoolRecord(
ticker=str(r["ticker"]).upper(),
dp_net_flow=(r["dp_net_flow"] if "dp_net_flow" in df.columns else None),
dp_score=(r["dp_score"] if "dp_score" in df.columns else None),
)
return out

def load_fundamentals_csv(path: str) -> Dict[str, FundamentalsRecord]:
if not path or not os.path.exists(path): return {}
df = pd.read_csv(path)
out = {}
for _, r in df.iterrows():
out[str(r["ticker"]).upper()] = FundamentalsRecord(
ticker=str(r["ticker"]).upper(),
revenue_yoy=(r["revenue_yoy"] if "revenue_yoy" in df.columns else None),
eps_yoy=(r["eps_yoy"] if "eps_yoy" in df.columns else None),
)
return out

# ---------------------------
# Scoring pillars
# ---------------------------
def technical_flow_score(df: pd.DataFrame) -> float:
"""
0-100 score from EMAs stack, RSI, MACD, ADX, Volume trend.
"""
try:
close = df["Adj Close"].rename("close") if "Adj Close" in df else df["Close"].rename("close")
high, low, vol = df["High"], df["Low"], df["Volume"]

ema20 = close.ewm(span=TECH_EMAS[0]).mean()
ema50 = close.ewm(span=TECH_EMAS[1]).mean()
ema200= close.ewm(span=TECH_EMAS[2]).mean()

rsi = ta.momentum.RSIIndicator(close, window=14).rsi()
macd = ta.trend.MACD(close).macd_diff()
adx = ta.trend.ADXIndicator(high, low, close).adx()

# Normalize components
# Trend stack (0-40)
stack_score = (
(1 if ema20.iloc[-1] > ema50.iloc[-1] else 0) +
(1 if ema50.iloc[-1] > ema200.iloc[-1] else 0) +
(1 if ema20.iloc[-1] > ema200.iloc[-1] else 0)
) / 3.0 * 40.0

# RSI favor 50-70 (bullish), scale to 0-30
rsi_now = rsi.iloc[-1]
rsi_component = max(0.0, min(30.0, (rsi_now - 30) / 40 * 30)) if not np.isnan(rsi_now) else 15.0

# MACD histogram latest vs distribution (0-15)
macd_scaled = scale_0_100(macd).iloc[-1] if macd.notna().any() else 50.0
macd_component = macd_scaled * 0.15

# ADX trend strength (25+ is trending) → 0-15
adx_now = adx.iloc[-1]
adx_component = max(0.0, min(15.0, (adx_now - 15) / 20 * 15)) if not np.isnan(adx_now) else 7.5

# Volume trend (20d vs 200d)
vol20 = vol.rolling(20).mean().iloc[-1]
vol200= vol.rolling(200).mean().iloc[-1]
vol_ratio = safe_div(vol20, vol200)
vol_component = 0 if vol_ratio is None or np.isnan(vol_ratio) else max(0.0, min(10.0, (vol_ratio-0.8)/0.7*10))

score = stack_score + rsi_component + macd_component + adx_component + vol_component
return float(max(0.0, min(100.0, score)))
except Exception:
return np.nan

def options_sentiment_score(pcr: Optional[float]) -> float:
"""
Map Put/Call ratio to bullish 0-100.
Typical PCR ranges: ~0.5-1.5. Lower => more bullish.
"""
if pcr is None or np.isnan(pcr): return np.nan
# Clip to [0.3, 2.0] then invert
pcr_c = max(0.3, min(2.0, pcr))
# 0.3 -> ~100, 1.0 -> 50, 2.0 -> ~0
score = (2.0 - pcr_c) / (2.0 - 0.3) * 100.0
return float(max(0.0, min(100.0, score)))

def momentum_scores(df: pd.DataFrame) -> Dict[str, float]:
out = {}
for label, win in MOM_WINDOW_DAYS.items():
out[f"mom_{label}"] = pct_change(df, window=win)
# Composite momentum (skip 1m if you prefer medium-term)
comp = 0.1*out.get("mom_1m", np.nan) + 0.3*out.get("mom_3m", np.nan) + 0.25*out.get("mom_6m", np.nan) + 0.35*out.get("mom_12m", np.nan)
out["mom_composite_raw"] = comp
return out

def growth_score(revenue_yoy: Optional[float], eps_yoy: Optional[float], peers_df: pd.DataFrame) -> float:
"""
Rank/percentile within peers for revenue & EPS YoY → average → 0-100.
If missing, returns NaN.
"""
if revenue_yoy is None or eps_yoy is None or np.isnan(revenue_yoy) or np.isnan(eps_yoy):
return np.nan
# Build temp arrays with peers + this point for robust scaling
rev = peers_df["revenue_yoy"].astype(float)
eps = peers_df["eps_yoy"].astype(float)
rev2 = pd.concat([rev, pd.Series([revenue_yoy])], ignore_index=True)
eps2 = pd.concat([eps, pd.Series([eps_yoy])], ignore_index=True)
rev_p = rankdata(rev2, method="average")/len(rev2)*100
eps_p = rankdata(eps2, method="average")/len(eps2)*100
# last element corresponds to our ticker
return float(np.nanmean([rev_p[-1], eps_p[-1]]))

def dark_pool_score(rec: Optional[DarkPoolRecord], peer_records: List[DarkPoolRecord]) -> float:
if rec is None: return np.nan
if rec.dp_score is not None and not np.isnan(rec.dp_score):
return float(max(0.0, min(100.0, rec.dp_score)))
# derive from dp_net_flow vs peers
if rec.dp_net_flow is None or np.isnan(rec.dp_net_flow): return np.nan
vals = pd.Series([r.dp_net_flow for r in peer_records if r.dp_net_flow is not None and not np.isnan(r.dp_net_flow)])
if vals.empty:
return np.nan
vals = winsorize_series(vals)
lo, hi = vals.min(), vals.max()
sc = (rec.dp_net_flow - lo) / (hi - lo) * 100 if hi > lo else 50.0
return float(max(0.0, min(100.0, sc)))

# ---------------------------
# Orchestrator
# ---------------------------
def analyze_tickers(
tickers: List[str],
dark_pool_csv: Optional[str] = None,
fundamentals_csv: Optional[str] = None
) -> pd.DataFrame:

tickers = [t.upper() for t in tickers]
dp_map = load_dark_pool_csv(dark_pool_csv) if dark_pool_csv else {}
f_map = load_fundamentals_csv(fundamentals_csv) if fundamentals_csv else {}

# Pre-collect peer lists for scaling DP/Growth
dp_peers = list(dp_map.values())
growth_peers = pd.DataFrame(
[{"ticker":k, "revenue_yoy":v.revenue_yoy, "eps_yoy":v.eps_yoy}
for k,v in f_map.items() if v.revenue_yoy is not None and v.eps_yoy is not None]
)
if growth_peers.empty:
growth_peers = pd.DataFrame({"ticker":[], "revenue_yoy":[], "eps_yoy":[]})

rows = []
# Pass 1: compute price-based things
cache_price = {}
for t in tickers:
df = fetch_price_history(t)
cache_price[t] = df

# Pass 2: compute pillar scores
# Momentum raw scores for all (for cross-sectional scaling)
raw_moms = {}
for t in tickers:
df = cache_price.get(t)
raw_moms[t] = np.nan
if df is not None:
ms = momentum_scores(df)
raw_moms[t] = ms["mom_composite_raw"]

# Scale momentum cross-sectionally
mom_scaled = scale_0_100(pd.Series(raw_moms))
# Gather outputs
for t in tickers:
df = cache_price.get(t)
tech = technical_flow_score(df) if df is not None else np.nan
pcr = fetch_option_chain_put_call_ratio(t)
opt = options_sentiment_score(pcr)

dp_rec = dp_map.get(t)
dp_sc = dark_pool_score(dp_rec, dp_peers)

# growth
f_rec = f_map.get(t, FundamentalsRecord(ticker=t, revenue_yoy=np.nan, eps_yoy=np.nan))
gr_sc = growth_score(f_rec.revenue_yoy, f_rec.eps_yoy, growth_peers) if not growth_peers.empty else np.nan

# final composite (handle NaNs by redistributing weights over available pillars)
components = {
"technical_flow": tech,
"options_sentiment": opt,
"dark_pool": dp_sc,
"momentum": mom_scaled.get(t, np.nan),
"growth": gr_sc
}
avail = {k:v for k,v in components.items() if v is not None and not np.isnan(v)}
if not avail:
composite = np.nan
else:
w = {k:WEIGHTS[k] for k in avail.keys()}
w_sum = sum(w.values())
w_norm = {k:v/w_sum for k,v in w.items()}
composite = sum(avail[k]*w_norm[k] for k in avail.keys())

# add a simple signal
signal = (
"Strong Buy" if composite >= 80 else
"Buy" if composite >= 65 else
"Watch" if composite >= 50 else
"Avoid"
)

# momentum components for visibility
mom_parts = momentum_scores(df) if df is not None else {}
rows.append({
"ticker": t,
"technical_flow": round(tech,2) if not np.isnan(tech) else np.nan,
"options_pcr": round(pcr,3) if pcr is not None and not np.isnan(pcr) else np.nan,
"options_sentiment": round(opt,2) if not np.isnan(opt) else np.nan,
"dark_pool": round(dp_sc,2) if not np.isnan(dp_sc) else np.nan,
"mom_1m": mom_parts.get("mom_1m", np.nan),
"mom_3m": mom_parts.get("mom_3m", np.nan),
"mom_6m": mom_parts.get("mom_6m", np.nan),
"mom_12m": mom_parts.get("mom_12m", np.nan),
"momentum": round(mom_scaled.get(t, np.nan),2) if not np.isnan(mom_scaled.get(t, np.nan)) else np.nan,
"growth": round(gr_sc,2) if not np.isnan(gr_sc) else np.nan,
"composite": round(composite,2) if not np.isnan(composite) else np.nan,
"signal": signal
})

out = pd.DataFrame(rows)
# tidy momentum pct columns
for c in ["mom_1m","mom_3m","mom_6m","mom_12m"]:
if c in out.columns:
out[c] = (out[c]*100).round(2)
out = out.sort_values("composite", ascending=False, na_position="last").reset_index(drop=True)
return out

# ---------------------------
# CLI
# ---------------------------
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Net Options Sentiment + Dark Pool + Technical Flow + Momentum + Growth ranker")
parser.add_argument("--tickers", nargs="+", required=True, help="e.g., AAPL MSFT NVDA")
parser.add_argument("--dark_pool_csv", type=str, default=None, help="Optional path to dark pool CSV (ticker,dp_net_flow,dp_score)")
parser.add_argument("--fundamentals_csv", type=str, default=None, help="Optional path to fundamentals CSV (ticker,revenue_yoy,eps_yoy)")
parser.add_argument("--out_csv", type=str, default="trading_setup_output.csv", help="Output CSV path")
args = parser.parse_args()

df = analyze_tickers(args.tickers, args.dark_pool_csv, args.fundamentals_csv)
pd.set_option("display.max_columns", None)
print(df.to_string(index=False))
df.to_csv(args.out_csv, index=False)
print(f"\nSaved: {args.out_csv}")