Skip to content

Default to using self.cancellation_manager #115

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Sep 7, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 3 additions & 13 deletions compiler_opt/rl/compilation_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,20 +334,14 @@ def collect_data(
"""
if reward_stat is None:
default_result = self.compile_fn(
module_spec,
tf_policy_path='',
reward_only=bool(tf_policy_path),
cancellation_manager=self._cancellation_manager)
module_spec, tf_policy_path='', reward_only=bool(tf_policy_path))
reward_stat = {
k: RewardStat(v[1], v[1]) for (k, v) in default_result.items()
}

if tf_policy_path:
policy_result = self.compile_fn(
module_spec,
tf_policy_path,
reward_only=False,
cancellation_manager=self._cancellation_manager)
module_spec, tf_policy_path, reward_only=False)
else:
policy_result = default_result

Expand Down Expand Up @@ -383,17 +377,13 @@ def collect_data(

def compile_fn(
self, module_spec: corpus.ModuleSpec, tf_policy_path: str,
reward_only: bool,
cancellation_manager: Optional[WorkerCancellationManager]
) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
reward_only: bool) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
"""Compiles for the given IR file under the given policy.

Args:
module_spec: a ModuleSpec.
tf_policy_path: path to TF policy directory on local disk.
reward_only: whether only return reward.
cancellation_manager: a WorkerCancellationManager to handle early
termination

Returns:
A dict mapping from example identifier to tuple containing:
Expand Down
4 changes: 1 addition & 3 deletions compiler_opt/rl/compilation_runner_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,10 +76,8 @@ def _get_sequence_example(feature_value):
return text_format.Parse(sequence_example_text, tf.train.SequenceExample())


def _mock_compile_fn(file_paths, tf_policy_path, reward_only,
cancellation_manager): # pylint: disable=unused-argument
def _mock_compile_fn(file_paths, tf_policy_path, reward_only): # pylint: disable=unused-argument
del file_paths
del cancellation_manager
if tf_policy_path:
sequence_example = _get_sequence_example(_POLICY_FEATURE_VALUE)
native_size = _POLICY_REWARD
Expand Down
13 changes: 5 additions & 8 deletions compiler_opt/rl/inlining/inlining_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import io
import os
import tempfile
from typing import Dict, Optional, Tuple
from typing import Dict, Tuple

import gin
import tensorflow as tf
Expand Down Expand Up @@ -47,17 +47,13 @@ def __init__(self, llvm_size_path: str, *args, **kwargs):

def compile_fn(
self, module_spec: corpus.ModuleSpec, tf_policy_path: str,
reward_only: bool, cancellation_manager: Optional[
compilation_runner.WorkerCancellationManager]
) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
reward_only: bool) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
"""Run inlining for the given IR file under the given policy.

Args:
module_spec: a ModuleSpec.
tf_policy_path: path to TF policy direcoty on local disk.
reward_only: whether only return native size.
cancellation_manager: handler for early termination by killing any running
processes

Returns:
A dict mapping from example identifier to tuple containing:
Expand All @@ -71,6 +67,7 @@ def compile_fn(
cancelled work.
RuntimeError: if llvm-size produces unexpected output.
"""

working_dir = tempfile.mkdtemp()

log_path = os.path.join(working_dir, 'log')
Expand All @@ -91,12 +88,12 @@ def compile_fn(
['-mllvm', '-ml-inliner-model-under-training=' + tf_policy_path])
compilation_runner.start_cancellable_process(command_line,
self._compilation_timeout,
cancellation_manager)
self._cancellation_manager)
command_line = [self._llvm_size_path, output_native_path]
output_bytes = compilation_runner.start_cancellable_process(
command_line,
timeout=self._compilation_timeout,
cancellation_manager=cancellation_manager,
cancellation_manager=self._cancellation_manager,
want_output=True)
if not output_bytes:
raise RuntimeError(f'Empty llvm-size output: {" ".join(command_line)}')
Expand Down
11 changes: 4 additions & 7 deletions compiler_opt/rl/regalloc/regalloc_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
import io
import os
import tempfile
from typing import Dict, Optional, Tuple
from typing import Dict, Tuple

import gin
import tensorflow as tf
Expand All @@ -45,17 +45,13 @@ class RegAllocRunner(compilation_runner.CompilationRunner):
# construction
def compile_fn(
self, module_spec: corpus.ModuleSpec, tf_policy_path: str,
reward_only: bool, cancellation_manager: Optional[
compilation_runner.WorkerCancellationManager]
) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
reward_only: bool) -> Dict[str, Tuple[tf.train.SequenceExample, float]]:
"""Run inlining for the given IR file under the given policy.

Args:
module_spec: a ModuleSpec.
tf_policy_path: path to TF policy direcoty on local disk.
reward_only: whether only return reward.
cancellation_manager: handler for early termination by killing any running
processes

Returns:
A dict mapping from example identifier to tuple containing:
Expand All @@ -69,6 +65,7 @@ def compile_fn(
cancelled work.
RuntimeError: if llvm-size produces unexpected output.
"""

working_dir = tempfile.mkdtemp()

log_path = os.path.join(working_dir, 'log')
Expand All @@ -88,7 +85,7 @@ def compile_fn(
command_line.extend(['-mllvm', '-regalloc-model=' + tf_policy_path])
compilation_runner.start_cancellable_process(command_line,
self._compilation_timeout,
cancellation_manager)
self._cancellation_manager)

sequence_example = struct_pb2.Struct()

Expand Down