Skip to content

Commit 21c93e7

Browse files
committed
exercise 3.10 completed. Add an option that amplify the text size by 20%, not sucessfully. Instead, used html tag to style the paragraph headings
1 parent 28f8ac2 commit 21c93e7

File tree

2 files changed

+124
-54
lines changed

2 files changed

+124
-54
lines changed

_posts/2024-10-05-Fourier_1.md

Lines changed: 118 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
---
22
layout: single
3-
title: "1. The Genesis of Fourier Analysis"
3+
title: "(1) The Genesis of Fourier Analysis"
44
categories: mathematics
55
tags: [analysis, Fourier analysis, Fourier Series]
66
use_math: true
@@ -53,7 +53,7 @@ toc: true
5353

5454
## 1. The vibrating string
5555

56-
#### Simple harmonic motion
56+
<p class="text-size-12">Simple harmonic motion</p>
5757

5858
Consider a mass $m$ attached to a horizontal spring.
5959
Let $y(t)$ be the displacement of the mass at time $t$ where the equilibrium position is set to $y=0$.
@@ -78,7 +78,7 @@ or
7878

7979
$$y(t)=A\cos(ct-\phi).$$
8080

81-
#### Standing and traveling waves
81+
<p class="text-size-12"> Standing and traveling waves </p>
8282

8383
One dimensional wave can be described as a function $y=u(x,t)$.
8484
That is, we can specify the vertical displacement $y$ of a wave depending on the horizontal displacement $x$ and time $t$.
@@ -97,7 +97,7 @@ $$u(x,t)=F(x-ct).$$
9797
Here, $F(x)$ is the initial profile of $u$.
9898
This wave moves rightward if $c\gt0$ where $c$ can be thought of as the velocity.
9999

100-
#### Harmonic and superposition of tones
100+
<p class='text-size-12'> Harmonic and superposition of tones </p>
101101

102102
(quote without any modification) The pure tones are accompanied by combinations of overtones which are responsible for the timbre of the instrument.
103103

@@ -164,7 +164,7 @@ We can get two kinds of solution to the wave equation ;
164164
(1) using traveling waves
165165
(2) using the superposition of standing waves
166166

167-
#### A solution using traveling waves
167+
<p class='text-size-12'> A solution using traveling waves </p>
168168

169169
We claim that (a) has the general solution of the form
170170

@@ -324,7 +324,7 @@ u(x,t)
324324
\end{aligned}
325325
$$
326326

327-
#### A solution using superposition of standing waves
327+
<p class='text-size-12'> A solution using the superposition of standing waves </p>
328328

329329
We claim that (a) has the general solution of the form
330330

@@ -568,7 +568,7 @@ Note that the function $f$ in the last expression is the extended version (on $\
568568

569569
## 3. Exercises
570570

571-
### 3.1
571+
<p class='text-size-12'> 3.1 </p>
572572
The absolute value of $z=x+iy$ where $x,y\in\mathbb R$ is
573573

574574
$$|z| = \sqrt{x^2+y^2}.$$
@@ -635,7 +635,8 @@ $$
635635
\end{align*}
636636
$$
637637

638-
### 3.2
638+
<p class='text-size-12'> 3.2 </p>
639+
639640
The complex conjugate of $z=x+iy$ is
640641

641642
$$\bar z = x-iy.$$
@@ -650,7 +651,8 @@ $$z\bar z = (x+iy)(x-iy)=x^2-(iy)^2=x^2+y^2=|z|^2$$
650651

651652
Since $\lvert z\rvert=1$, we have $z\bar z=\lvert z\rvert^2=1$, where we can divide $z$ on both sides.
652653

653-
### 3.3
654+
<p class='text-size-12'> 3.3 </p>
655+
654656
(a)
655657
A complex sequence $\\{w_n\\}_{n=1}^\infty$ converges to $w$ or $w_n\to w$ if
656658

@@ -758,7 +760,8 @@ $$
758760
Therefore, the $\\{S_n\\}$ is Cauchy and is convergent.
759761
It follows that $\sum z_n$ converges.
760762

761-
### 3.4
763+
<p class='text-size-12'> 3.4 </p>
764+
762765
Define the exponential function as a power series as follows ;
763766

764767
$$
@@ -936,7 +939,8 @@ the third and the first identity follow.
936939
Substituting $\phi$ by $-\phi$, the second and fourth ones follow.
937940
Adding and substracting these four identities, the remaining identities follow.
938941

939-
### 3.5
942+
<p class='text-size-12'> 3.5 </p>
943+
940944
Prove the followings, provided that $m$ and $n$ are integers.
941945

942946
$$
@@ -1019,7 +1023,8 @@ The first term always vanishes as before.
10191023
The second term does too if $m\ne n$, while if $m=n$, the integrand is $0$ and the second term also vanishes.
10201024
Thus the whole value always equals to 0.
10211025

1022-
### 3.6
1026+
<p class='text-size-12'> 3.6 </p>
1027+
10231028
Prove that the ODE
10241029

10251030
$$f''(t)+c^2f(t)=0$$
@@ -1070,7 +1075,8 @@ $$
10701075
a\cos ct + b\sin ct = f(t)\times(\cos^2ct+\sin^2ct)=f(t).
10711076
$$
10721077

1073-
### 3.7
1078+
<p class='text-size-12'> 3.7 </p>
1079+
10741080
If $a$ and $b$ are real,
10751081

10761082
$$a\cos ct+b\sin ct = A\cos(ct-\phi)$$
@@ -1093,7 +1099,8 @@ a\cos ct+b\sin ct
10931099
\end{align*}.
10941100
$$
10951101

1096-
### 3.8
1102+
<p class='text-size-12'> 3.8 </p>
1103+
10971104
([Asked at mathexchange](https://math.stackexchange.com/q/4980904/746048))
10981105

10991106
Suppose that $F:(a,b)\to\mathbb R$ has a continuous second derivative.
@@ -1209,7 +1216,7 @@ $$
12091216
=\lim_{h\to0}\left(F''(x)+\phi(h)+\phi(-h)\right)=F''(x)
12101217
$$
12111218

1212-
### 3.9
1219+
<p class='text-size-12'> 3.9 </p>
12131220

12141221
Consider the case of plucked string ;
12151222

@@ -1244,9 +1251,9 @@ Note also that neither $p=0$ nor $p=\pi$ as long as $h\ne0$.
12441251
So if $p=\frac\pi2$, then $A_2=A_4=\cdots=0$ and the even harmonics are missing.
12451252

12461253
$A_3=0$ iff $p=\frac\pi3k$ and $A_6=0$ iff $p=\frac\pi6k$ for an integer $k$.
1247-
If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
1254+
If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the $3k$-th harmonics are missing.
12481255

1249-
### 3.10
1256+
<p class='text-size-12'> 3.10 </p>
12501257

12511258
Show that the expression of the Laplacian
12521259

@@ -1270,6 +1277,9 @@ $$
12701277
$$
12711278

12721279
(proof)
1280+
1281+
(이 계산은 군대에서 전역하고 대학교 2학년으로 복학하던 시점에 했던 기억이 있지만 다시 해봐야지.)
1282+
12731283
Note that
12741284

12751285
$$
@@ -1279,58 +1289,113 @@ y&=r\sin\theta
12791289
\end{aligned}
12801290
$$
12811291

1282-
Let's first calculate the following four derivatives ;
1283-
$\frac{\partial f}{\partial r}$,
1284-
$\frac{\partial^2 f}{\partial r^2}$,
1285-
$\frac{\partial f}{\partial\theta}$,
1286-
$\frac{\partial^2 f}{\partial\theta^2}$,
1292+
Let $u$ be a function from $\mathbb R^2$ to $\mathbb R$
1293+
Let's first calculate the following four derivatives ;
1294+
$\frac{\partial u}{\partial r}$,
1295+
$\frac{\partial^2 u}{\partial r^2}$,
1296+
$\frac{\partial u}{\partial\theta}$,
1297+
$\frac{\partial^2 u}{\partial\theta^2}$,
12871298

12881299
$$
12891300
\begin{aligned}
1290-
\frac{\partial f}{\partial r}
1301+
\frac{\partial u}{\partial r}
12911302
&=
1292-
\frac{\partial x}{\partial r}\frac{\partial f}{\partial x}
1303+
\frac{\partial x}{\partial r}\frac{\partial u}{\partial x}
12931304
+
1294-
\frac{\partial y}{\partial r}\frac{\partial f}{\partial y}\\
1295-
&=\cos\theta\frac{\partial f}{\partial x}
1296-
+\sin\theta\frac{\partial f}{\partial y}\\
1297-
\frac{\partial^2 f}{\partial r^2}
1305+
\frac{\partial y}{\partial r}\frac{\partial u}{\partial y}\\
1306+
&=\cos\theta\frac{\partial u}{\partial x}
1307+
+\sin\theta\frac{\partial u}{\partial y}\\
1308+
\frac{\partial^2 u}{\partial r^2}
12981309
&=\frac{\partial}{\partial r}\left(
1299-
\cos\theta\frac{\partial f}{\partial x}
1300-
+\sin\theta\frac{\partial f}{\partial y}
1310+
\cos\theta\frac{\partial u}{\partial x}
1311+
+\sin\theta\frac{\partial u}{\partial y}
13011312
\right)\\
13021313
&=\cos\theta\left(
1303-
\frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x^2}
1304-
+\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1314+
\frac{\partial x}{\partial r}\frac{\partial^2u}{\partial x^2}
1315+
+\frac{\partial y}{\partial r}\frac{\partial^2u}{\partial x\partial y}
13051316
\right)
13061317
+\sin\theta\left(
1307-
\frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1308-
+\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial y^2}
1318+
\frac{\partial x}{\partial r}\frac{\partial^2u}{\partial x\partial y}
1319+
+\frac{\partial y}{\partial r}\frac{\partial^2u}{\partial y^2}
13091320
\right)\\
1310-
&=\cos^2\theta f_{xx}
1311-
+2\sin\theta\cos\theta f_{xy}
1312-
+\sin^2\theta f_{yy}\\
1313-
\frac{\partial f}{\partial\theta}
1321+
&=\cos^2\theta u_{xx}
1322+
+2\sin\theta\cos\theta u_{xy}
1323+
+\sin^2\theta u_{yy}\\
1324+
\frac{\partial u}{\partial\theta}
13141325
&=
1315-
\frac{\partial x}{\partial\theta}\frac{\partial f}{\partial x}
1326+
\frac{\partial x}{\partial\theta}\frac{\partial u}{\partial x}
13161327
+
1317-
\frac{\partial y}{\partial\theta}\frac{\partial f}{\partial y}\\
1318-
&=-r\sin\theta\frac{\partial f}{\partial x}
1319-
+r\cos\theta\frac{\partial f}{\partial y}\\
1320-
\frac{\partial^2 f}{\partial\theta^2}
1328+
\frac{\partial u}{\partial\theta}\frac{\partial u}{\partial y}\\
1329+
&=-r\sin\theta\frac{\partial u}{\partial x}
1330+
+r\cos\theta\frac{\partial u}{\partial y}\\
1331+
\frac{\partial^2 u}{\partial\theta^2}
13211332
&=\frac{\partial}{\partial\theta}\left(
1322-
-r\sin\theta\frac{\partial f}{\partial x}
1323-
+r\cos\theta\frac{\partial f}{\partial y}
1333+
-r\sin\theta\frac{\partial u}{\partial x}
1334+
+r\cos\theta\frac{\partial u}{\partial y}
13241335
\right)\\
1325-
&=-r\cos\theta\frac{\partial f}{\partial x}
1336+
&=
1337+
-r\cos\theta\frac{\partial u}{\partial x}
13261338
-r\sin\theta\left(
1327-
\frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x^2}
1328-
+\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1329-
\right)
1330-
-r\sin\theta\frac{\partial f}{\partial y}
1339+
\frac{\partial x}{\partial\theta}\frac{\partial^2u}{\partial x^2}
1340+
+\frac{\partial y}{\partial\theta}\frac{\partial^2u}{\partial x\partial y}
1341+
\right)\\
1342+
&\phantom{=}
1343+
-r\sin\theta\frac{\partial u}{\partial y}
13311344
+r\cos\theta\left(
1332-
\frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1333-
+\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial y^2}
1334-
\right)
1345+
\frac{\partial x}{\partial\theta}\frac{\partial^2u}{\partial x\partial y}
1346+
+\frac{\partial y}{\partial\theta}\frac{\partial^2u}{\partial y^2}
1347+
\right)\\
1348+
&=-r\cos\theta u_x-r\sin\theta u_y
1349+
+r^2\sin^2\theta u_{xx}
1350+
+r^2\cos^2\theta u_{yy}
1351+
-2r^2\sin\theta\cos\theta u_{xy}
1352+
\end{aligned}
1353+
$$
1354+
1355+
Therefore,
1356+
1357+
$$
1358+
\begin{aligned}
1359+
\left(\frac{\partial^2}{\partial r^2}+\frac1r\frac{\partial}{\partial r}+\frac1{r^2}\frac{\partial^2}{\partial\theta^2}\right) u
1360+
&=\frac{\partial^2u}{\partial r^2}+\frac1r\frac{\partial u}{\partial r}+\frac1{r^2}\frac{\partial^2u}{\partial\theta^2}\\
1361+
&=\cos^2\theta u_{xx}+2\sin\theta\cos\theta u_{xy}+\sin^2\theta u_{yy}\\
1362+
&\phantom{=}
1363+
+\frac1r\cos\theta u_x+\frac1r\sin\theta u_y
1364+
-\frac1r\cos\theta u_x-\frac1r\sin\theta u_y\\
1365+
&\phantom{=}
1366+
+\sin^2\theta u_{xx}+\cos^2\theta u_{yy}-2\sin\theta\cos\theta u_{xy}\\
1367+
&=u_{xx}+u_{yy}\\
1368+
&=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}\\
1369+
&=\left(
1370+
\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}
1371+
\right)u\\
1372+
\end{aligned}
1373+
$$
1374+
1375+
Since $u$ was arbitrary,
1376+
1377+
$$
1378+
\frac{\partial^2}{\partial r^2}+\frac1r\frac{\partial}{\partial r}+\frac1{r^2}\frac{\partial^2}{\partial\theta^2}
1379+
=
1380+
\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}
1381+
$$
1382+
1383+
as desired.
1384+
Moreover
1385+
1386+
$$
1387+
\begin{aligned}
1388+
\left|\frac{\partial u}{\partial r}\right|^2
1389+
+
1390+
\frac1{r^2}\left|\frac{\partial u}{\partial\theta}\right|^2
1391+
&=
1392+
\left(\cos\theta u_x+\sin\theta u_y\right)^2
1393+
+
1394+
\left(-\sin\theta u_x+\cos\theta u_y\right)^2\\
1395+
&={f_x}^2+{f_y}^2\\
1396+
&=
1397+
\left|\frac{\partial u}{\partial x}\right|^2
1398+
+\frac1{r^2}
1399+
\left|\frac{\partial u}{\partial y}\right|^2
13351400
\end{aligned}
13361401
$$

_sass/minimal-mistakes/_utilities.scss

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -660,4 +660,9 @@ a.reversefootnote {
660660
display: block;
661661
margin-left: auto;
662662
margin-right: auto;
663-
}
663+
}
664+
665+
.text-size-12 {
666+
font-size: 1.2rem; /* Adjust the size as needed */
667+
font-weight: bold;
668+
}

0 commit comments

Comments
 (0)