Skip to content

Commit 28f8ac2

Browse files
committed
still writing : chain rule
1 parent 09f2ea7 commit 28f8ac2

File tree

1 file changed

+90
-1
lines changed

1 file changed

+90
-1
lines changed

_posts/2024-10-05-Fourier_1.md

Lines changed: 90 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1244,4 +1244,93 @@ Note also that neither $p=0$ nor $p=\pi$ as long as $h\ne0$.
12441244
So if $p=\frac\pi2$, then $A_2=A_4=\cdots=0$ and the even harmonics are missing.
12451245

12461246
$A_3=0$ iff $p=\frac\pi3k$ and $A_6=0$ iff $p=\frac\pi6k$ for an integer $k$.
1247-
If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
1247+
If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
1248+
1249+
### 3.10
1250+
1251+
Show that the expression of the Laplacian
1252+
1253+
$$\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$$
1254+
1255+
is given in polar coordinates by the formula
1256+
1257+
$$\Delta=\frac{\partial^2}{\partial r^2}+\frac1r\frac\partial{\partial r}+\frac1{r^2}\frac{\partial^2}{\partial\theta^2}.$$
1258+
1259+
Also, prove that
1260+
1261+
$$
1262+
\left|\frac{\partial u}{\partial x}\right|^2
1263+
+
1264+
\left|\frac{\partial u}{\partial y}\right|^2
1265+
=
1266+
\left|\frac{\partial u}{\partial r}\right|^2
1267+
+
1268+
\frac1{r^2}
1269+
\left|\frac{\partial u}{\partial\theta}\right|^2
1270+
$$
1271+
1272+
(proof)
1273+
Note that
1274+
1275+
$$
1276+
\begin{aligned}
1277+
x&=r\cos\theta\\
1278+
y&=r\sin\theta
1279+
\end{aligned}
1280+
$$
1281+
1282+
Let's first calculate the following four derivatives ;
1283+
$\frac{\partial f}{\partial r}$,
1284+
$\frac{\partial^2 f}{\partial r^2}$,
1285+
$\frac{\partial f}{\partial\theta}$,
1286+
$\frac{\partial^2 f}{\partial\theta^2}$,
1287+
1288+
$$
1289+
\begin{aligned}
1290+
\frac{\partial f}{\partial r}
1291+
&=
1292+
\frac{\partial x}{\partial r}\frac{\partial f}{\partial x}
1293+
+
1294+
\frac{\partial y}{\partial r}\frac{\partial f}{\partial y}\\
1295+
&=\cos\theta\frac{\partial f}{\partial x}
1296+
+\sin\theta\frac{\partial f}{\partial y}\\
1297+
\frac{\partial^2 f}{\partial r^2}
1298+
&=\frac{\partial}{\partial r}\left(
1299+
\cos\theta\frac{\partial f}{\partial x}
1300+
+\sin\theta\frac{\partial f}{\partial y}
1301+
\right)\\
1302+
&=\cos\theta\left(
1303+
\frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x^2}
1304+
+\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1305+
\right)
1306+
+\sin\theta\left(
1307+
\frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1308+
+\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial y^2}
1309+
\right)\\
1310+
&=\cos^2\theta f_{xx}
1311+
+2\sin\theta\cos\theta f_{xy}
1312+
+\sin^2\theta f_{yy}\\
1313+
\frac{\partial f}{\partial\theta}
1314+
&=
1315+
\frac{\partial x}{\partial\theta}\frac{\partial f}{\partial x}
1316+
+
1317+
\frac{\partial y}{\partial\theta}\frac{\partial f}{\partial y}\\
1318+
&=-r\sin\theta\frac{\partial f}{\partial x}
1319+
+r\cos\theta\frac{\partial f}{\partial y}\\
1320+
\frac{\partial^2 f}{\partial\theta^2}
1321+
&=\frac{\partial}{\partial\theta}\left(
1322+
-r\sin\theta\frac{\partial f}{\partial x}
1323+
+r\cos\theta\frac{\partial f}{\partial y}
1324+
\right)\\
1325+
&=-r\cos\theta\frac{\partial f}{\partial x}
1326+
-r\sin\theta\left(
1327+
\frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x^2}
1328+
+\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1329+
\right)
1330+
-r\sin\theta\frac{\partial f}{\partial y}
1331+
+r\cos\theta\left(
1332+
\frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1333+
+\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial y^2}
1334+
\right)
1335+
\end{aligned}
1336+
$$

0 commit comments

Comments
 (0)