@@ -1244,4 +1244,93 @@ Note also that neither $p=0$ nor $p=\pi$ as long as $h\ne0$.
1244
1244
So if $p=\frac\pi2$, then $A_2=A_4=\cdots=0$ and the even harmonics are missing.
1245
1245
1246
1246
$A_3=0$ iff $p=\frac\pi3k$ and $A_6=0$ iff $p=\frac\pi6k$ for an integer $k$.
1247
- If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
1247
+ If $p=\frac\pi3$ or $p=\frac23p$, then $A_3=A_6=\cdots=0$ and the harmonics of $3k$ are missing.
1248
+
1249
+ ### 3.10
1250
+
1251
+ Show that the expression of the Laplacian
1252
+
1253
+ $$ \Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2} $$
1254
+
1255
+ is given in polar coordinates by the formula
1256
+
1257
+ $$ \Delta=\frac{\partial^2}{\partial r^2}+\frac1r\frac\partial{\partial r}+\frac1{r^2}\frac{\partial^2}{\partial\theta^2}. $$
1258
+
1259
+ Also, prove that
1260
+
1261
+ $$
1262
+ \left|\frac{\partial u}{\partial x}\right|^2
1263
+ +
1264
+ \left|\frac{\partial u}{\partial y}\right|^2
1265
+ =
1266
+ \left|\frac{\partial u}{\partial r}\right|^2
1267
+ +
1268
+ \frac1{r^2}
1269
+ \left|\frac{\partial u}{\partial\theta}\right|^2
1270
+ $$
1271
+
1272
+ (proof)
1273
+ Note that
1274
+
1275
+ $$
1276
+ \begin{aligned}
1277
+ x&=r\cos\theta\\
1278
+ y&=r\sin\theta
1279
+ \end{aligned}
1280
+ $$
1281
+
1282
+ Let's first calculate the following four derivatives ;
1283
+ $\frac{\partial f}{\partial r}$,
1284
+ $\frac{\partial^2 f}{\partial r^2}$,
1285
+ $\frac{\partial f}{\partial\theta}$,
1286
+ $\frac{\partial^2 f}{\partial\theta^2}$,
1287
+
1288
+ $$
1289
+ \begin{aligned}
1290
+ \frac{\partial f}{\partial r}
1291
+ &=
1292
+ \frac{\partial x}{\partial r}\frac{\partial f}{\partial x}
1293
+ +
1294
+ \frac{\partial y}{\partial r}\frac{\partial f}{\partial y}\\
1295
+ &=\cos\theta\frac{\partial f}{\partial x}
1296
+ +\sin\theta\frac{\partial f}{\partial y}\\
1297
+ \frac{\partial^2 f}{\partial r^2}
1298
+ &=\frac{\partial}{\partial r}\left(
1299
+ \cos\theta\frac{\partial f}{\partial x}
1300
+ +\sin\theta\frac{\partial f}{\partial y}
1301
+ \right)\\
1302
+ &=\cos\theta\left(
1303
+ \frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x^2}
1304
+ +\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1305
+ \right)
1306
+ +\sin\theta\left(
1307
+ \frac{\partial x}{\partial r}\frac{\partial^2f}{\partial x\partial y}
1308
+ +\frac{\partial y}{\partial r}\frac{\partial^2f}{\partial y^2}
1309
+ \right)\\
1310
+ &=\cos^2\theta f_{xx}
1311
+ +2\sin\theta\cos\theta f_{xy}
1312
+ +\sin^2\theta f_{yy}\\
1313
+ \frac{\partial f}{\partial\theta}
1314
+ &=
1315
+ \frac{\partial x}{\partial\theta}\frac{\partial f}{\partial x}
1316
+ +
1317
+ \frac{\partial y}{\partial\theta}\frac{\partial f}{\partial y}\\
1318
+ &=-r\sin\theta\frac{\partial f}{\partial x}
1319
+ +r\cos\theta\frac{\partial f}{\partial y}\\
1320
+ \frac{\partial^2 f}{\partial\theta^2}
1321
+ &=\frac{\partial}{\partial\theta}\left(
1322
+ -r\sin\theta\frac{\partial f}{\partial x}
1323
+ +r\cos\theta\frac{\partial f}{\partial y}
1324
+ \right)\\
1325
+ &=-r\cos\theta\frac{\partial f}{\partial x}
1326
+ -r\sin\theta\left(
1327
+ \frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x^2}
1328
+ +\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1329
+ \right)
1330
+ -r\sin\theta\frac{\partial f}{\partial y}
1331
+ +r\cos\theta\left(
1332
+ \frac{\partial x}{\partial\theta}\frac{\partial^2 f}{\partial x\partial y}
1333
+ +\frac{\partial y}{\partial\theta}\frac{\partial^2 f}{\partial y^2}
1334
+ \right)
1335
+ \end{aligned}
1336
+ $$
0 commit comments