@@ -396,7 +396,7 @@ is a solution for the wave equation.
396
396
397
397
$$u_m(x,t)=\sin mx\left(A_m\cos mt + B_m\sin mt\right)$$ -->
398
398
399
- <div class =" notice--danger " >
399
+ <div class =" notice--info " markdown = " 1 " >
400
400
<b >Remark </b > <br >
401
401
Letting, for example, $A_m=1$, $B_m=0$,
402
402
$$ u_1(x,t)=\cos t\sin x $$
503
503
504
504
By Euler identity, (we can choose $a_m=\frac{A_m'-A_mi}2$ and $a_ {-m}=\frac{A_m'+A_mi}2$)
505
505
506
+ <div class =" notice--success " markdown =" 1 " >
506
507
$$
507
508
F(x) = \sum_{m=-\infty}^\infty a_me^{imx}.
508
509
$$
509
510
511
+ </div >
512
+
510
513
Multiplying $e^{-inx}$ and integrating over $[ -\pi, \pi] $,
511
514
512
515
$$
@@ -568,7 +571,7 @@ Note that the function $f$ in the last expression is the extended version (on $\
568
571
569
572
### 2.1 Derivation of the heat equation
570
573
571
- <div class =" notice--info " >
574
+ <div class =" notice--info " markdown = " 1 " >
572
575
책의 내용이 잘 이해가 가지 않아서, 따로 찾아보았고 별도로 유도해보았다.
573
576
<a href =" http://www-personal.umd.umich.edu/~adwiggin/TeachingFiles/FourierSeries/Resources/HeatEquationDerivation.pdf " > 미시건 대학교 자료</a >가 굉장히 이해가 잘 되게 설명되어 있어서 이 자료를 가장 많이 참고했다.
574
577
이 자료에서 Fourier's law가 소개되고 사용되고 있는데, 사실 Stein의 책과 다른 자료들에서도 Fourier's law는 기본으로 깔고 시작하는 것 같다.
688
691
k\left[\frac{\partial^2u}{\partial x^2}(x,y,t)+\frac{\partial^2u}{\partial x^2}(x,y,t)\right].
689
692
$$
690
693
691
- <div class =" notice--info " >
694
+ <div class =" notice--info " markdown = " 1 " >
692
695
책의 내용을 이해했다.
693
696
처음에 열에너지($H$)를 정의하는 식은 이해가 안간다.
694
697
아마도 대학교 수준의 열역학을 이해해야 알 수 있을 듯하다.
796
799
797
800
This is called the ** (time dependent) heat equation** .
798
801
802
+
803
+ ### 2.2 Steady-state heat equation in the disc
804
+
805
+ As time passes by, the temperature at each point might converge to some equilibrium temperature.
806
+ In this steady state, we can assume $\frac{\partial u}{\partial t}=0$.
807
+ The heat equation then becomes,
808
+
809
+ $$
810
+ \frac{\partial^2u}{\partial x^2}
811
+ +
812
+ \frac{\partial^2u}{\partial y^2}
813
+ =0\tag{10}
814
+ $$
815
+
816
+ Let $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$.
817
+ It is called the * Laplacian* operator.
818
+ (10) now becomes a simple equation $\Delta u=0$
819
+ By 3.10, we can rewrite it as
820
+
821
+ $$ \Delta=\frac{\partial^2}{\partial r^2}+\frac1r\frac{\partial}{\partial r}+\frac1{r^2}\frac{\partial^2}{\partial y^2}. $$
822
+
823
+ <div class =" notice--info " markdown =" 1 " >
824
+ <b >Remark </b > <br >
825
+ Such $u$ satisfying $\Delta u=0$ is called a * harmonic function* .
826
+ </div >
827
+
828
+ Let $D$ and $C$ be a unit circle and a unit circle which can be represented as
829
+
830
+ $$
831
+ \begin{aligned}
832
+ D&=\{(x,y):x^2+y^2\lt1\}=\{(r,\theta):r\lt1\}\\
833
+ C&=\{(x,y):x^2+y^2=1\}=\{(r,\theta):r=1\}
834
+ \end{aligned}
835
+ $$
836
+
837
+ in the Cartesian and the Polar coordinates.
838
+ Here is a famous and traditional problem in the field of PDE.
839
+
840
+ <div class =" notice--info " markdown =" 1 " >
841
+ <b >Dirichlet Problem</b > <br >
842
+ Given $u$ on $C$, find the steady-state solution $u$ on $D$
843
+ </div >
844
+
845
+ Let $f=u|C$ specify the temperature of the boundary.
846
+ For convinience, we can assume that $f$ has its argument $\theta$ only.
847
+ The boundary condition then becomes $f(\theta)=u(1,\theta)$.
848
+ Using the polar form of Laplacian, the condition $\Delta u=0$ becomes
849
+
850
+ $$
851
+ \begin{gathered}
852
+ \frac{\partial^2u}{\partial r^2}+\frac1r\frac{\partial u}{\partial r}+\frac1{r^2}\frac{\partial^2u}{\partial y^2}=0\\
853
+ r^2\frac{\partial^2u}{\partial r^2}+r\frac{\partial u}{\partial r}=-\frac{\partial^2u}{\partial y^2}
854
+ \end{gathered}
855
+ $$
856
+
857
+ Separating the variables so that $u(r,\theta)=F(r)G(\theta)$, then
858
+
859
+ $$
860
+ \begin{gathered}
861
+ r^2F''(r)G(\theta)+rF'(r)G(\theta)=-F(r)G''(\theta)\\
862
+ \frac{r^2F''(r)+rF'(r)}{F(r)}=-\frac{G''(\theta)}{G(\theta)}
863
+ \end{gathered}
864
+ $$
865
+
866
+ Let both sides be $\lambda$ as before, we have a system
867
+
868
+ $$
869
+ \begin{aligned}
870
+ G''(\theta)+\lambda G(\theta)&=0\\
871
+ r^2F''(r)+rF'(r)-\lambda F(r)&=0
872
+ \end{aligned}
873
+ $$
874
+
875
+ If $\lambda\lt 0$, then $G$ is not oscillatory.
876
+ So, suppose $\lambda\ge0$ and let $m^2=\lambda$.
877
+ The first differential equation then becomes (1) in the simple harmonic motion again.
878
+ We conclude, using Euler identity,
879
+
880
+ $$
881
+ \begin{aligned}
882
+ G(\theta)
883
+ &=\tilde A\cos m\theta+\tilde B\sin m\theta\\
884
+ &=Ae^{im\theta} + Be^{-im\theta}
885
+ \end{aligned}
886
+ $$
887
+
888
+ for some constants $A$ and $B$.
889
+ For the second differential equation, suppose further that $m$ is an integer and apply 3.11.
890
+ If $m\neq0$, then $F(r)=\alpha r^m+\beta r^{-m}$.
891
+ Since a negative power of $r$ diverges as $r\to0^+$, take $F(r)=r^{|m|}$.
892
+ If $m=0$, then $F(r)=\alpha+\beta\log r$.
893
+ Again, $\log r$ diverges as $r\to0^+$.
894
+ So take $F(r)=1$.
895
+ In general, we can write $F(r)=r^{|m|}$.
896
+
897
+ Therefore,
898
+
899
+ $$ u(r,\theta)=r^{|m|}\left(A_m e^{im\theta}+B_me^{-im\theta}\right) $$
900
+
901
+ is a solution to $\Delta u=0$ for each integer $m$.
902
+ Superposing this class of solutions we can write
903
+
904
+ <div class =" notice--success " markdown =" 1 " >
905
+ $$
906
+ u(r,\theta)=\sum_{m=-\infty}^\infty r^ma_me^{im\theta}.
907
+ $$
908
+
909
+ </div >
910
+
911
+ The boundary condition $f(\theta)=u(1,\theta)$ becomes
912
+
913
+ $$
914
+ f(\theta)=\sum_{m=-\infty}^\infty a_me^{im\theta}
915
+ $$
916
+
917
+ The solution and the boundary is just simlar to ones that we encountered in the wave equation.
918
+ And we may wonder if such a sequence $\\ {a_m\\ }$ exists that equate the boundary condition.
919
+
920
+
799
921
## 3. Exercises
800
922
801
923
<p class =' text-size-12 ' > 3.1 </p >
1061
1183
1062
1184
Therefore, $f_n\to f$ uniformly.
1063
1185
1064
- <div class =" notice--info " >
1186
+ <div class =" notice--info " markdown = " 1 " >
1065
1187
전체적인 증명은
1066
1188
<a href =" https://en.wikipedia.org/wiki/Weierstrass_M-test " >Wikipedia : Weierstrauss M-test</a >
1067
1189
의 증명을 참고하였다.
1517
1639
\left|\frac{\partial u}{\partial\theta}\right|^2
1518
1640
$$
1519
1641
1520
- <div class =" notice--info " >
1642
+ <div class =" notice--info " markdown = " 1 " >
1521
1643
이 계산은 군대에서 전역하고 대학교 2학년으로 복학하던 시점에 했던 기억이 있다.
1522
1644
지금 다시 해봐야지.
1523
1645
</div >
@@ -1644,12 +1766,12 @@ $$
1644
1766
\end{aligned}
1645
1767
$$
1646
1768
1647
- <p class =' text-size-12 ' > 3.10 </p >
1769
+ <p class =' text-size-12 ' > 3.11 </p >
1648
1770
Let $n$ be an integer and let $F$ be a twice differentiable function satisfying
1649
1771
1650
1772
$$ r^2F''(r)+rF'(r)-n^2F(r)=0 $$
1651
1773
1652
- for $rgt0 $.
1774
+ for $r\gt0 $.
1653
1775
The solution to the ODE is
1654
1776
1655
1777
$$
@@ -1771,7 +1893,7 @@ $$F(r)=\alpha r^n+\beta r^{-n}$$
1771
1893
1772
1894
taking $\alpha=\frac c{2n}$ and $\beta=c'''$.
1773
1895
1774
- <div class =" notice--info " >
1896
+ <div class =" notice--info " markdown = " 1 " >
1775
1897
책에 나온 힌트를 따라가기는 했으나 마지막에 나오는 ODE를 풀지 못해 mathexchange에
1776
1898
<a href =" https://math.stackexchange.com/questions/4986596/simple-ode-whose-solution-is-rn-or-r-n/4986639#4986639 " >질문</a >
1777
1899
을 했었다.
@@ -1795,7 +1917,7 @@ taking $\alpha=\frac c{2n}$ and $\beta=c'''$.
1795
1917
1796
1918
### 4.1 Homogeneous second order linear ODE with constant coefficient
1797
1919
1798
- <div class =" notice--info " >
1920
+ <div class =" notice--info " markdown = " 1 " >
1799
1921
책을 읽다보니 미분방정식을 풀어야 할 상황이 많이 나온다.
1800
1922
학부 때 '미분방정식' 수업을 들었었고, 또 '미분방정식론', '편미분방정식' 등의 수업도 듣고 학점도 잘 나왔던 것으로 기억하지만, 정작 기본적인 '미분방정식' 수업에서 제대로 된 설명을 듣지 못했기에 기본이 부족하다.
1801
1923
설명을 제대로 듣지 못했다면, 그때 따로 공부를 했으면 될 일이긴 하지만, 2학년이었던 당시에는 해석학과 선형대수, 집합론을 공부하는 데만 해도 시간이 부족했다.
@@ -1811,12 +1933,14 @@ $$y''(t)+c^2y(t)=0$$
1811
1933
$$ y''(t)+\lambda y(t)=0 $$
1812
1934
와 같은 식에서 $\lambda$가 음수이면 일반해가 어떻게 나오는지가 책의 내용만으로는 명확히 설명되지 않는다.
1813
1935
특히 1.2절의 (3)번 식인
1936
+
1814
1937
$$
1815
1938
\begin{aligned}
1816
1939
\psi''(t)-\lambda\psi(t)&=0\\
1817
1940
\phi''(x)-\lambda\phi(x)&=0
1818
1941
\end{aligned}\tag3
1819
1942
$$
1943
+
1820
1944
의 경우에도 $\lambda$의 부호에 대해 두루뭉실하게 넘어가는 것 같다.
1821
1945
마찬가지의 상황이 2.2절의
1822
1946
$$ G''(\theta)+\lambda G(\theta)=0 $$
@@ -1882,25 +2006,19 @@ ar^2+br+c=0.\tag2
1882
2006
$$
1883
2007
1884
2008
Here is a theorem :
2009
+ <div class =" notice--success " markdown =" 1 " >>
1885
2010
1886
- <div class =" notice--info " >
1887
2011
If the characteristic equation (2) has two distinct real roots $r_1$ and $r_2$, then the general solution to (1) is given by
1888
-
1889
2012
$$
1890
2013
y=c_1e^{r_1x}+c_2e^{r_2x}.
1891
2014
$$
1892
-
1893
2015
If (2) has a single (repeated) root $r$, then the general solution to (1) is given by
1894
-
1895
2016
$$
1896
2017
y=(c_1x+c_2)e^{rx}.
1897
2018
$$
1898
-
1899
2019
If (3) has imaginary roots $\alpha\pm\beta i$, then the general solution to (1) is given by
1900
-
1901
2020
$$
1902
2021
y=e^\alpha(c_1\cos\beta x+c_2\sin\beta x).
1903
2022
$$
1904
-
1905
2023
In the above solutions, $c_1$ and $c_2$ are arbitrary constants.
1906
2024
</div >
0 commit comments