Skip to content

gqian-coder/MGARD-roi

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MGARD build status format status

MGARD (MultiGrid Adaptive Reduction of Data) is a technique for multilevel lossy compression of scientific data based on the theory of multigrid methods. We encourage you to make a GitHub issue if you run into any problems using MGARD, have any questions or suggestions, etc.

Building and Installing

To build and install MGARD, run the following from the root of the repository. You will need CMake and Protobuf.

$ cmake -S . -B build -D CMAKE_INSTALL_PREFIX=<location to install MGARD>
$ cmake --build build
$ cmake --install build

Documentation

To build the documentation, run cmake with -D MGARD_ENABLE_DOCS=ON. You will need Doxygen. The documentation will be installed to ${CMAKE_INSTALL_PREFIX}/share/doc/MGARD/ by default. Open index.html with a browser to read.

Benchmarks

To build the benchmarks, run cmake with -D MGARD_ENABLE_BENCHMARKS=ON. You will need Google Benchmark. You can then run the benchmarks with build/bin/benchmarks.

Including and Linking

The API consists of a header file compress.hpp providing declarations for function templates mgard::compress and mgard::decompress. See the header for documentation of these templates.

To use MGARD in your project, you will need to tell your compiler where to find the MGARD headers (by default, ${CMAKE_INSTALL_PREFIX}/include/mgard/) and library (by default, ${CMAKE_INSTALL_PREFIX}/lib/). If you're using CMake, you can call find_package(mgard) and add a dependency to the mgard::mgard imported target. See the examples directory for a basic example.

Command Line Interface

To build the command line interface, run cmake with -D MGARD_ENABLE_CLI=ON. You will need TCLAP. A convenience executable called mgard will be built and installed to ${CMAKE_INSTALL_PREFIX}/bin/ by default. You can get help with the CLI by running the following commands.

$ mgard --help
$ man mgard

This executable is an experimental part of the API.

Accelerated and portable compression

MGARD-X is designed for portable compression on NVIDIA GPUs, AMD GPUs, and CPUs. See detailed user guide in here.

CUDA accelerated compression

MGARD-GPU is designed for accelerating compression specifically using NVIDIA GPUs. See detailed user guide in here.

Fine-grain progressive data reconstruction

MDR and MDR-X are designed for enabling fine-grain data refactoring and progressive data reconstruction. See detailed user guide in here.

References

MGARD's theoretical foundation and software implementation are discussed in the following papers. Reference [2] covers the simplest case and is a natural starting point. Reference [6] covers the design and implementation on GPU heterogeneous systems.

  1. Ben Whitney. Multilevel Techniques for Compression and Reduction of Scientific Data. PhD thesis, Brown University, 2018.
  2. Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel Techniques for Compression and Reduction of Scientific Data—The Univariate Case. Computing and Visualization in Science 19, 65–76, 2018.
  3. Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel Techniques for Compression and Reduction of Scientific Data—The Multivariate Case. SIAM Journal on Scientific Computing 41 (2), A1278–A1303, 2019.
  4. Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel Techniques for Compression and Reduction of Scientific Data—Quantitative Control of Accuracy in Derived Quantities. SIAM Journal on Scientific Computing 41 (4), A2146–A2171, 2019.
  5. Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel Techniques for Compression and Reduction of Scientific Data—The Unstructured Case. SIAM Journal on Scientific Computing, 42 (2), A1402–A1427, 2020.
  6. Jieyang Chen et al. Accelerating Multigrid-based Hierarchical Scientific Data Refactoring on GPUs. 35th IEEE International Parallel & Distributed Processing Symposium, May 17–21, 2021.

About

up to 3D roi-adoptive compression

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published