| Developed by | Guardrails AI |
|---|---|
| Date of development | Feb 15, 2024 |
| Validator type | Format |
| Blog | |
| License | Apache 2 |
| Input/Output | Output |
This validator is a template for creating other validators, but for demonstrative purposes it ensures that a generated output is the literal pass.
-
Dependencies:
- guardrails-ai>=0.4.0
-
Foundation model access keys:
- OPENAI_API_KEY
$ guardrails hub install hub://guardrails/validator_templateIn this example, we apply the validator to a string output generated by an LLM.
# Import Guard and Validator
from guardrails.hub import ValidatorTemplate
from guardrails import Guard
# Setup Guard
guard = Guard().use(
ValidatorTemplate
)
guard.validate("pass") # Validator passes
guard.validate("fail") # Validator failsIn this example, we apply the validator to a string field of a JSON output generated by an LLM.
# Import Guard and Validator
from pydantic import BaseModel, Field
from guardrails.hub import ValidatorTemplate
from guardrails import Guard
# Initialize Validator
val = ValidatorTemplate()
# Create Pydantic BaseModel
class Process(BaseModel):
process_name: str
status: str = Field(validators=[val])
# Create a Guard to check for valid Pydantic output
guard = Guard.from_pydantic(output_class=Process)
# Run LLM output generating JSON through guard
guard.parse("""
{
"process_name": "templating",
"status": "pass"
}
""")__init__(self, on_fail="noop")
-
Initializes a new instance of the ValidatorTemplate class.
arg_1(str): A placeholder argument to demonstrate how to use init arguments.arg_2(str): Another placeholder argument to demonstrate how to use init arguments.on_fail(str, Callable): The policy to enact when a validator fails. Ifstr, must be one ofreask,fix,filter,refrain,noop,exceptionorfix_reask. Otherwise, must be a function that is called when the validator fails.
Parameters
validate(self, value, metadata) -> ValidationResult
-
Validates the given `value` using the rules defined in this validator, relying on the `metadata` provided to customize the validation process. This method is automatically invoked by `guard.parse(...)`, ensuring the validation logic is applied to the input data.
- This method should not be called directly by the user. Instead, invoke
guard.parse(...)where this method will be called internally for each associated Validator. - When invoking
guard.parse(...), ensure to pass the appropriatemetadatadictionary that includes keys and values required by this validator. Ifguardis associated with multiple validators, combine all necessary metadata into a single dictionary. -
value(Any): The input value to validate. -
metadata(dict): A dictionary containing metadata required for validation. Keys and values must match the expectations of this validator.Key Type Description Default key1String Description of key1's role. N/A
Note:
Parameters