Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion classifiers/inception.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

class Classifier_INCEPTION:

def __init__(self, output_directory, input_shape, nb_classes, verbose=False, build=True, batch_size=64,
def __init__(self, output_directory, input_shape, nb_classes, verbose=True, build=True, batch_size=64,
nb_filters=32, use_residual=True, use_bottleneck=True, depth=6, kernel_size=41, nb_epochs=1500):

self.output_directory = output_directory
Expand Down
4 changes: 2 additions & 2 deletions classifiers/nne.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@

class Classifier_NNE:

def create_classifier(self, model_name, input_shape, nb_classes, output_directory, verbose=False,
def create_classifier(self, model_name, input_shape, nb_classes, output_directory, verbose=True,
build=True):
if self.check_if_match('inception*', model_name):
from classifiers import inception
Expand All @@ -22,7 +22,7 @@ def check_if_match(self, rex, name2):
pattern = re.compile(rex)
return pattern.match(name2)

def __init__(self, output_directory, input_shape, nb_classes, verbose=False, nb_iterations=5,
def __init__(self, output_directory, input_shape, nb_classes, verbose=True, nb_iterations=5,
clf_name='inception'):
self.classifiers = [clf_name]
out_add = ''
Expand Down
6 changes: 3 additions & 3 deletions utils/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@

UNIVARIATE_DATASET_NAMES = ['Meat', 'Coffee']

UNIVARIATE_ARCHIVE_NAMES = ['TSC', 'InlineSkateXPs', 'SITS']
UNIVARIATE_ARCHIVE_NAMES = ['TSC']
UNIVARIATE_ARCHIVE_NAMES = ['Univariate_arff','mts_archive', 'coto_data', 'InlineSkateXPs', 'SITS']


SITS_DATASETS = ['SatelliteFull_TRAIN_c301', 'SatelliteFull_TRAIN_c200', 'SatelliteFull_TRAIN_c451',
'SatelliteFull_TRAIN_c89', 'SatelliteFull_TRAIN_c677', 'SatelliteFull_TRAIN_c59',
Expand All @@ -29,6 +29,6 @@
'InlineSkate-256', 'InlineSkate-512', 'InlineSkate-1024',
'InlineSkate-2048']

dataset_names_for_archive = {'TSC': UNIVARIATE_DATASET_NAMES,
dataset_names_for_archive = {'Univariate_arff': UNIVARIATE_DATASET_NAMES,
'SITS': SITS_DATASETS,
'InlineSkateXPs': InlineSkateXPs_DATASETS}
44 changes: 33 additions & 11 deletions utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,11 @@ def check_if_file_exits(file_name):


def readucr(filename, delimiter=','):
data = np.loadtxt(filename, delimiter=delimiter)
Y = data[:, 0]
X = data[:, 1:]
data = np.loadtxt(filename)
Y = data[:,0]
X = data[:,1:]
print(X.shape, Y.shape)
print(X[0], Y[0])
return X, Y


Expand All @@ -56,11 +58,31 @@ def create_directory(directory_path):
def read_dataset(root_dir, archive_name, dataset_name):
datasets_dict = {}

file_name = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/' + dataset_name
x_train, y_train = readucr(file_name + '_TRAIN')
x_test, y_test = readucr(file_name + '_TEST')
datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())
if archive_name == 'coto_data':
file_name = root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
x_train = np.load(file_name + 'x_train.npy')
y_train = np.load(file_name + 'y_train.npy')
x_test = np.load(file_name + 'x_test.npy')
y_test = np.load(file_name + 'y_test.npy')

datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())
elif archive_name == 'mts_archive':
file_name = root_dir+'/archives/'+archive_name+'/'+dataset_name+'/'
x_train = np.load(file_name + 'x_train.npy')
y_train = np.load(file_name + 'y_train.npy')
x_test = np.load(file_name + 'x_test.npy')
y_test = np.load(file_name + 'y_test.npy')

datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())

else:
file_name = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/' + dataset_name
x_train, y_train = readucr(file_name + '_TRAIN.txt')
x_test, y_test = readucr(file_name + '_TEST.txt')
datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())

return datasets_dict

Expand All @@ -70,12 +92,12 @@ def read_all_datasets(root_dir, archive_name):

dataset_names_to_sort = []

if archive_name == 'TSC':
if archive_name == 'Univariate_arff':
for dataset_name in DATASET_NAMES:
root_dir_dataset = root_dir + '/archives/' + archive_name + '/' + dataset_name + '/'
file_name = root_dir_dataset + dataset_name
x_train, y_train = readucr(file_name + '_TRAIN')
x_test, y_test = readucr(file_name + '_TEST')
x_train, y_train = readucr(file_name + '_TRAIN.txt')
x_test, y_test = readucr(file_name + '_TEST.txt')

datasets_dict[dataset_name] = (x_train.copy(), y_train.copy(), x_test.copy(),
y_test.copy())
Expand Down