XYZ Corporation Multi-Database Infrastructure - A comprehensive AWS database architecture implementation demonstrating enterprise-grade multi-AZ deployment, cross-region read replicas, real-time data processing, and intelligent caching solutions for nationwide branch operations.
- ✅ 99.9% Database Availability with Multi-AZ RDS deployment
- ✅ 75% Latency Reduction through intelligent caching strategies
- ✅ Real-Time Data Processing with Kinesis and DynamoDB integration
- ✅ Cross-Region Read Performance via strategic replica placement
- ✅ Automated Backup & Recovery with 2-day retention policy
- ✅ Zero Downtime Scaling for growing user base
📋 Complete Automation Scripts: GitHub Gists Collection
While this case study demonstrates hands-on AWS Console implementation for learning purposes, I've also created production-ready automation scripts that achieve the same results programmatically:
Script | Purpose | Gist Link |
---|---|---|
🗄️ RDS Multi-AZ Setup | Primary database with high availability | View Script |
🔄 Read Replica Management | Cross-region replica deployment | View Script |
⚡ Kinesis Pipeline | Real-time data streaming setup | View Script |
💾 DynamoDB Configuration | NoSQL database for real-time analytics | View Script |
🚀 ElastiCache Deployment | Redis caching layer automation | View Script |
Why Both Approaches?
- Manual Implementation (This Repo) → Understanding complex database architectures deeply
- Automated Scripts (Gists) → Production-ready Infrastructure as Code
┌─────────────────────────────────────────────────────────────────────────┐
│ XYZ Corporation Multi-Database Architecture │
├─────────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌──────────────────┐ │
│ │ US-West-2 │ │ US-East-1 │ │ US-Central │ │
│ │ (Oregon) │ │ (Primary) │ │ (Ohio) │ │
│ │ │ │ │ │ │ │
│ │ ┌──────────────┐ │ │ ┌──────────────┐ │ │ ┌──────────────┐ │ │
│ │ │ RDS Read │◄├────┤►│ RDS Multi-AZ │─┼────┤►│ RDS Read │ │ │
│ │ │ Replica │ │ │ │ Primary DB │ │ │ │ Replica │ │ │
│ │ └──────────────┘ │ │ │ (MySQL 8.0) │ │ │ └──────────────┘ │ │
│ │ │ │ └──────────────┘ │ │ │ │
│ │ ┌──────────────┐ │ │ │ │ ┌──────────────┐ │ │
│ │ │ ElastiCache │ │ │ ┌──────────────┐ │ │ │ ElastiCache │ │ │
│ │ │ Redis Cluster│ │ │ │ ElastiCache │ │ │ │ Redis Cluster│ │ │
│ │ └──────────────┘ │ │ │ Redis Master │ │ │ └──────────────┘ │ │
│ └──────────────────┘ │ └──────────────┘ │ └──────────────────┘ │
│ │ │ │
│ │ ┌──────────────┐ │ │
│ │ │ Kinesis │ │ │
│ │ │ Data Streams │ │ │
│ │ └──────┬───────┘ │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ ┌──────────────┐ │ │
│ │ │ DynamoDB │ │ │
│ │ │ (Real-time) │ │ │
│ │ └──────────────┘ │ │
│ └──────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ Data Flow Architecture │ │
│ │ │ │
│ │ Device Data ──► Kinesis ──► DynamoDB ──► Real-time Analytics │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ Application ──► Write to Primary ──► Read from Replicas │ │
│ │ │ │ │ │
│ │ ▼ ▼ │ │
│ │ Cache Check ──► ElastiCache ──► Branch Reports │ │
│ └─────────────────────────────────────────────────────────────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────────┐ │
│ │ Security & Monitoring │ │
│ │ • Multi-AZ Deployment for High Availability │ │
│ │ • Automated Backup with 2-day retention │ │
│ │ • VPC Security Groups & NACLs │ │
│ │ • IAM Roles & Database Authentication │ │
│ │ • CloudWatch Monitoring & Alerts │ │
│ │ • Performance Insights & Enhanced Monitoring │ │
│ └─────────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────────┘
Service | Purpose | Configuration |
---|---|---|
Amazon RDS | Primary relational database | MySQL 8.0, Multi-AZ, t3.medium |
RDS Read Replicas | Cross-region read scaling | Multi-region deployment |
Amazon Kinesis | Real-time data streaming | 4 shards, 24-hour retention |
Amazon DynamoDB | NoSQL for real-time analytics | On-demand capacity, DDB Streams |
ElastiCache Redis | Distributed caching layer | Multi-AZ cluster, cache.t3.micro |
CloudWatch | Monitoring & alerting | Performance Insights, Enhanced monitoring |
multi-database-architecture-casestudy/
├── 📋 documentation/
│ ├── case-study.pdf # Complete case study document
│ ├── implementation-guide.md # Step-by-step deployment guide
│ ├── database-architecture.md # Architecture best practices
│ └── performance-optimization.md # Performance tuning guide
├── 🔧 scripts/
│ ├── rds-setup/ # RDS deployment automation
│ ├── replica-management/ # Read replica operations
│ ├── kinesis-pipeline/ # Real-time processing setup
│ ├── dynamodb-config/ # NoSQL database configuration
│ ├── elasticache-setup/ # Caching layer deployment
│ └── monitoring-setup/ # CloudWatch configuration
├── ⚙️ configurations/
│ ├── all_configuration_files.md # All AWS configurations
│ ├── database-configs/ # RDS & DynamoDB configurations
│ ├── security-groups/ # Network security settings
│ ├── backup-policies/ # Automated backup configurations
│ ├── monitoring-configs/ # CloudWatch dashboards & alerts
│ ├── performance-tuning/ # Database optimization settings
│ └── disaster-recovery/ # DR and failover configurations
├── 📸 screenshots/ # Implementation evidence
├── 📸 architecture/ # Architecture diagrams
├── 🧪 testing/ # Performance test results
├── 📊 monitoring/ # CloudWatch dashboards
└── 💰 cost-analysis/ # Financial analysis
- AWS CLI configured with appropriate permissions
- Understanding of relational and NoSQL databases
- Basic knowledge of caching strategies
-
Clone the repository
git clone https://github.com/himanshu2604/multi-database-architecture-casestudy.git cd multi-database-architecture-casestudy
-
Deploy Primary RDS Database (US-East-1)
# Using AWS CLI (optional automation) aws rds create-db-instance \ --db-instance-identifier xyz-corp-primary-db \ --db-instance-class db.t3.medium \ --engine mysql \ --multi-az \ --backup-retention-period 2
-
Create Cross-Region Read Replicas
# Deploy to US-West-2 aws rds create-db-instance-read-replica \ --db-instance-identifier xyz-corp-replica-west \ --source-db-instance-identifier xyz-corp-primary-db \ --db-instance-class db.t3.medium
-
Set up Real-time Processing
# Create Kinesis Data Stream aws kinesis create-stream \ --stream-name xyz-corp-device-data-stream \ --shard-count 4
-
Deploy Caching Layer
# Create ElastiCache Redis Cluster bash scripts/elasticache-setup/deploy-redis-cluster.sh
-
Validate Implementation
bash scripts/testing/validate-architecture.sh
- Database Availability: 99.9% uptime achieved
- Read Latency: 75% reduction with regional replicas
- Cache Hit Ratio: 85% for frequently accessed data
- Real-time Processing: <2 second data processing latency
- Backup Recovery: 15-minute RTO, 2-day RPO
- RDS Primary: $85/month (Multi-AZ t3.medium)
- Read Replicas: $70/month each (2 replicas)
- ElastiCache: $25/month (Redis cluster)
- Kinesis: $15/month (4 shards)
- DynamoDB: $20/month (on-demand)
- Total Monthly: ~$285/month
- High Availability: Multi-AZ deployment ensures continuous operations
- Global Performance: Regional read replicas optimize branch access
- Real-time Insights: Instant data processing for business decisions
- Cost Efficiency: Optimized resource allocation across regions
- Scalability: Auto-scaling capabilities for growing user base
This project demonstrates practical experience with:
- ✅ Multi-AZ Database Deployment - Enterprise-grade high availability
- ✅ Cross-Region Read Replicas - Global database performance optimization
- ✅ Real-time Data Pipeline - Kinesis and DynamoDB integration
- ✅ Intelligent Caching - ElastiCache Redis for latency reduction
- ✅ Database Security - IAM, VPC, and encryption best practices
- ✅ Performance Monitoring - CloudWatch and Performance Insights
- ✅ Disaster Recovery - Automated backup and failover strategies
- ✅ Cost Optimization - Resource efficiency across multiple services
- Complete Case Study - Full technical analysis and implementation details
- Implementation Guide - Step-by-step deployment instructions
- Architecture Overview - System design and component relationships
- Performance Results - Benchmark metrics and validation results
Course: Executive Post Graduate Certification in Cloud Computing
Institution: iHub Divyasampark, IIT Roorkee
Module: AWS Database Architecture & Services
Duration: 3.5 Hours Implementation
Collaboration: Intellipaat
This is an academic project, but suggestions and improvements are welcome:
- Fork the repository
- Create a feature branch (
git checkout -b feature/improvement
) - Commit changes (
git commit -am 'Add improvement'
) - Push to branch (
git push origin feature/improvement
) - Create a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.
Himanshu Nitin Nehete
📧 Email: [email protected]
🔗 LinkedIn: My Profile
🎓 Institution: iHub Divyasampark, IIT Roorkee
💻 Database Automation Scripts: GitHub Gists Collection
⭐ Star this repository if it helped you learn AWS multi-database architecture! 🔄 Fork the automation gists to customize for your enterprise use case!
Keywords: AWS, RDS, Multi-AZ, Read Replicas, Kinesis, DynamoDB, ElastiCache, Database Architecture, High Availability, Real-time Processing, IIT Roorkee, Case Study, Enterprise Architecture, Cloud Databases