Skip to content

hongwei-wen/LW-loss-for-partial-label

Repository files navigation

LW loss

This is the code for the paper: LEVERAGED WEIGHTED LOSS FOR PARTIAL LABEL LEARNING. Paper link is https://arxiv.org/abs/2106.05731

Update

We have updated the code for LW loss with cross entropy (LWC), and the best parameters for both losses on the CIFAR-10 and MNIST datasets.

Setups

All code was developed and tested on a single machine equiped with a NVIDIA Tesla V100 GPU. The environment is as bellow:

  • Python 3.6.8
  • Numpy 1.16.4
  • Cuda 10.1.168

Quick Start

Here is a quick start on the CIFAR-10 and MNIST datasets.

For LW loss with sigmoid on CIFAR-10:

python main-cv_sgd_best.py -ds cifar10 -pr 0.1 -mo cnn -lo lws -lw 1 -lr 0.05 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds cifar10 -pr 0.3 -mo cnn -lo lws -lw 1 -lr 0.05 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds cifar10 -pr 0.5 -mo cnn -lo lws -lw 1 -lr 0.05 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

For LW loss with sigmoid on MNIST:

python main-cv_sgd_best.py -ds mnist -pr 0.1 -mo mlp -lo lws -lw 2 -lr 0.05 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds mnist -pr 0.3 -mo mlp -lo lws -lw 1 -lr 0.1 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds mnist -pr 0.5 -mo mlp -lo lws -lw 1 -lr 0.1 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

For LW loss with cross entropy on CIFAR-10:

python main-cv_sgd_best.py -ds cifar10 -pr 0.1 -mo cnn -lo lwc -lw 1 -lr 0.01 -wd 0.01 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds cifar10 -pr 0.3 -mo cnn -lo lwc -lw 2 -lr 0.01 -wd 0.01 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds cifar10 -pr 0.5 -mo cnn -lo lwc -lw 1 -lr 0.01 -wd 0.01 -ldr 0.5 -lds 50 -bs 256 -ep 250

For LW loss with cross entropy on MNIST:

python main-cv_sgd_best.py -ds mnist -pr 0.1 -mo mlp -lo lwc -lw 2 -lr 0.1 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds mnist -pr 0.3 -mo mlp -lo lwc -lw 1 -lr 0.1 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

python main-cv_sgd_best.py -ds mnist -pr 0.5 -mo mlp -lo lwc -lw 2 -lr 0.1 -wd 0.001 -ldr 0.5 -lds 50 -bs 256 -ep 250

More parameter grids can be found in file './main.py'.

We only use the MLP and ConvNet in papers, but Linear and Resnet models are also implemented.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages