Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 20 additions & 21 deletions config/config_hparam.json
Original file line number Diff line number Diff line change
@@ -1,28 +1,27 @@
{
"name": "biomarker_log",
"name": "biomarker_log",

"d_model_name" : "seyonec/PubChem10M_SMILES_BPE_450k",
"p_model_name" : "Rostlab/prot_bert_bfd",

"gpu_ids" : "4,5,6,7",
"model_mode" : "train",
"load_checkpoint" : "./checkpoint/bindingDB/epoch=33-step=13463.ckpt",
"d_model_name": "seyonec/PubChem10M_SMILES_BPE_450k",
"p_model_name": "Rostlab/prot_bert_bfd",

"prot_maxlength" : 545,
"layer_limit" : true,
"gpu_ids": "0,1",
"model_mode": "train",
"load_checkpoint": "./checkpoint/bindingDB/epoch=33-step=13463.ckpt",

"max_epoch": 50,
"batch_size": 54,
"num_workers": 16,
"prot_maxlength": 545,
"layer_limit": true,

"task_name" : "davis",
"lr": 5e-6,
"layer_features" : [768, 32, 1],
"dropout" : 0.1,
"loss_fn" : "smooth",
"max_epoch": 50,
"batch_size": 10,
"num_workers": 1,

"traindata_rate" : 1.0,
"pretrained": {"chem": true, "prot": true},
"num_seed" : 9095
}
"task_name": "davis",
"lr": 5e-6,
"layer_features": [768, 32, 1],
"dropout": 0.1,
"loss_fn": "smooth",

"traindata_rate": 1.0,
"pretrained": { "chem": true, "prot": true },
"num_seed": 9095
}
21 changes: 21 additions & 0 deletions job_script.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
#!/bin/bash
#SBATCH --time=12:00:00
#SBATCH --gpus-per-node=v100:2
#SBATCH --mem-per-gpu=20G
#SBATCH --account=def-hup-ab
#SBATCH --output=logs/job_log.out

echo "Loading rust"
module load rust/1.70.0

echo "Setting up python venv"
module load python/3.8.10
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index --upgrade pip
pip install --no-index -r requirements.txt
pip install --no-index -U 'tensorboardX'
pip install --no-index -U 'tensorboard'

srun ./train.py

10 changes: 5 additions & 5 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -1,19 +1,19 @@
--extra-index-url https://download.pytorch.org/whl/cu113
torch==1.11.0+cu113
torch==1.12.0
--extra-index-url https://download.pytorch.org/whl/cu113
torchvision==0.12.0+cu113
torchvision==0.13.0
--extra-index-url https://download.pytorch.org/whl/cu113
torchaudio==0.11.0
torchaudio==0.12.0

numpy
pandas
tqdm
scikit-learn
pytorch-lightning==1.8.4
pytorch-lightning==1.9.1
transformers
wandb
plotly
networkx
seaborn
easydict
sentencepiece
sentencepiece
21 changes: 21 additions & 0 deletions scripts.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
from transformers import AutoConfig, AutoTokenizer, RobertaModel, BertModel

d_tokenizer = AutoTokenizer.from_pretrained("seyonec/PubChem10M_SMILES_BPE_450k")
d_tokenizer.save_pretrained("./offline_data/tokenizers/seyonec/PubChem10M_SMILES_BPE_450k")

p_tokenizer = AutoTokenizer.from_pretrained("Rostlab/prot_bert_bfd")
p_tokenizer.save_pretrained("./offline_data/tokenizers/Rostlab/prot_bert_bfd")


roberta_model = RobertaModel.from_pretrained("seyonec/PubChem10M_SMILES_BPE_450k")
roberta_model.save_pretrained("./offline_data/models/seyonec/PubChem10M_SMILES_BPE_450k")

bert_model = BertModel.from_pretrained("Rostlab/prot_bert_bfd")
bert_model.save_pretrained("./offline_data/models/Rostlab/prot_bert_bfd")

drug_config = AutoConfig.from_pretrained("seyonec/PubChem10M_SMILES_BPE_450k")
drug_config.save_pretrained("./offline_data/configs/seyonec/PubChem10M_SMILES_BPE_450k")

prot_config = AutoConfig.from_pretrained("Rostlab/prot_bert_bfd")
prot_config.save_pretrained("./offline_data/configs/Rostlab/prot_bert_bfd")

24 changes: 14 additions & 10 deletions train.py
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
#!/usr/bin/env python

from curses import delay_output
import gc, os
from turtle import forward
Expand All @@ -21,6 +23,7 @@

from sklearn.metrics import f1_score, roc_curve, precision_score, recall_score, auc
from sklearn.metrics import roc_auc_score, average_precision_score
from module.model import deleteEncodingLayers

class BiomarkerDataset(Dataset):
def __init__(self, list_IDs, labels, df_dti, d_tokenizer, p_tokenizer, prot_maxLength):
Expand Down Expand Up @@ -92,8 +95,8 @@ def __init__(self, task_name, drug_model_name, prot_model_name, num_workers, bat
self.prot_maxLength = prot_maxLength
self.traindata_rate = traindata_rate

self.d_tokenizer = AutoTokenizer.from_pretrained(drug_model_name)
self.p_tokenizer = AutoTokenizer.from_pretrained(prot_model_name)
self.d_tokenizer = AutoTokenizer.from_pretrained("./offline_data/tokenizers/" + drug_model_name)
self.p_tokenizer = AutoTokenizer.from_pretrained("./offline_data/tokenizers/" + prot_model_name)

self.df_train = None
self.df_val = None
Expand Down Expand Up @@ -165,20 +168,20 @@ def __init__(self, drug_model_name, prot_model_name, lr, dropout, layer_features
# self.sigmoid = nn.Sigmoid()

#-- Pretrained Model Setting
drug_config = AutoConfig.from_pretrained(drug_model_name)
drug_config = AutoConfig.from_pretrained("./offline_data/configs/" + drug_model_name)
if d_pretrained is False:
self.d_model = RobertaModel(drug_config)
self.d_model = RobertaModel("./offline_data/models/" + drug_config)
else:
self.d_model = RobertaModel.from_pretrained(drug_model_name, num_labels=2,
self.d_model = RobertaModel.from_pretrained("./offline_data/models/" + drug_model_name, num_labels=2,
output_hidden_states=True,
output_attentions=True)

prot_config = AutoConfig.from_pretrained(prot_model_name)
prot_config = AutoConfig.from_pretrained("./offline_data/configs/" + prot_model_name)

if p_pretrained is False:
self.p_model = BertModel(prot_config)
self.p_model = BertModel("./offline_data/models/" + prot_config)
else:
self.p_model = BertModel.from_pretrained(prot_model_name,
self.p_model = BertModel.from_pretrained("./offline_data/models/" + prot_model_name,
output_hidden_states=True,
output_attentions=True)

Expand Down Expand Up @@ -457,7 +460,7 @@ def main_default(config):
logger=model_logger,
callbacks=[checkpoint_callback],
accelerator='gpu',
strategy='dp'
strategy='ddp'
)


Expand All @@ -481,7 +484,7 @@ def main_default(config):


if __name__ == '__main__':
using_wandb = True
using_wandb = False

if using_wandb == True:
#-- hyper param config file Load --##
Expand All @@ -498,3 +501,4 @@ def main_default(config):
else:
config = load_hparams('config/config_hparam.json')
main_default(config)

2 changes: 1 addition & 1 deletion train_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
from utils.attention_flow import *
from utils.emetric import regression_score

from module.model import BApredictModel
from module.model import BApredictModel, deleteEncodingLayers
from module.datamodule import BAPredictDataModule

import torch
Expand Down