Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 6 additions & 2 deletions examples/torch_native_parallelism/nd_parallel.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
PerformanceTracker,
create_collate_fn,
get_dataset,
get_model_flops_per_token,
setup_tokenizer,
)

Expand Down Expand Up @@ -73,7 +74,7 @@ def forward(model, batch, optimizer, accelerator: Accelerator):
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
optimizer.zero_grad(set_to_none=False)
dist.all_reduce(loss, op=dist.ReduceOp.AVG, group=loss_reduce_grp)

return loss
Expand Down Expand Up @@ -123,6 +124,7 @@ def train(args):

total_num_steps = min(args.num_steps, len(dataloader))
performance_tracker = PerformanceTracker(warmup_steps=5)
model_flops_per_token = get_model_flops_per_token(model, args.sequence_length)

accelerator.print("Starting training...")
for step, batch in enumerate(dataloader):
Expand All @@ -132,7 +134,9 @@ def train(args):
loss = forward(model, batch, optimizer, accelerator)

# We report TPS per device, so we divide by the number of devices in the non-data parallel dimension
metrics = performance_tracker.step(batch["input_ids"].shape[1] / parallelism_config.non_data_parallel_size)
metrics = performance_tracker.step(
batch["input_ids"].shape[1] / parallelism_config.non_data_parallel_size, model_flops_per_token
)

print_msg = f"Step {step}/{total_num_steps}, Loss: {loss.item():.4f}"
if "warmup_completed" in metrics:
Expand Down
8 changes: 7 additions & 1 deletion src/accelerate/accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -1528,6 +1528,12 @@ def prepare(self, *args, device_placement=None):

if self.parallelism_config and self.parallelism_config.tp_enabled:
args = self._prepare_tp(*args)
for item in args:
if any(
item in container
for container in (self._dataloaders, self._models, self._optimizers, self._schedulers)
):
item._is_accelerate_prepared = True

if self.parallelism_config and self.parallelism_config.cp_enabled:
args = self._prepare_cp(*args)
Expand Down Expand Up @@ -1623,7 +1629,7 @@ def _get_tensor_address(p):
# so that the optimizer can correctly update the model parameters.
param_group["params"] = [mapping[_get_tensor_address(p)] for p in param_group["params"]]

return args
return result

def _prepare_cp(self, *args):
from torch.distributed.tensor.experimental import context_parallel
Expand Down
Loading