Skip to content
Merged
13 changes: 10 additions & 3 deletions src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -2337,12 +2337,19 @@ def _maybe_expand_transformer_param_shape_or_error_(
f"this please open an issue at https://github.com/huggingface/diffusers/issues."
)

logger.debug(
debug_message = (
f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
f"checkpoint contains higher number of features than expected. The number of input_features will be "
f"expanded from {module_in_features} to {in_features}, and the number of output features will be "
f"expanded from {module_out_features} to {out_features}."
f"expanded from {module_in_features} to {in_features}"
)
if module_out_features != out_features:
debug_message += (
", and the number of output features will be "
f"expanded from {module_out_features} to {out_features}."
)
else:
debug_message += "."
logger.debug(debug_message)
Comment on lines +2340 to +2352
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Better crafting of the debug message I guess?


has_param_with_shape_update = True
parent_module_name, _, current_module_name = name.rpartition(".")
Expand Down
19 changes: 17 additions & 2 deletions src/diffusers/loaders/peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -205,6 +205,7 @@ def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="trans
weights.
"""
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
from peft.tuners.tuners_utils import BaseTunerLayer

cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
Expand Down Expand Up @@ -316,8 +317,22 @@ def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="trans
if is_peft_version(">=", "0.13.1"):
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage

inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
# To handle scnearios where we cannot successfully set state dict. If it's unsucessful,
# we should also delete the `peft_config` associated to the `adapter_name`.
try:
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
except RuntimeError as e:
for module in self.modules():
if isinstance(module, BaseTunerLayer):
active_adapters = module.active_adapters
for active_adapter in active_adapters:
if adapter_name in active_adapter:
module.delete_adapter(adapter_name)

self.peft_config.pop(adapter_name)
logger.error(f"Loading {adapter_name} was unsucessful with the following error: \n{e}")
raise

warn_msg = ""
if incompatible_keys is not None:
Expand Down
116 changes: 116 additions & 0 deletions tests/lora/test_lora_layers_flux.py
Original file line number Diff line number Diff line change
Expand Up @@ -430,6 +430,122 @@ def test_correct_lora_configs_with_different_ranks(self):
self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))

def test_lora_expanding_shape_with_normal_lora_raises_error(self):
# TODO: This test checks if an error is raised when a lora expands shapes (like control loras) but
# another lora with correct shapes is loaded. This is not supported at the moment and should raise an error.
# When we do support it, this test should be removed. Context: https://github.com/huggingface/diffusers/issues/10180
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)

# Change the transformer config to mimic a real use case.
num_channels_without_control = 4
transformer = FluxTransformer2DModel.from_config(
components["transformer"].config, in_channels=num_channels_without_control
).to(torch_device)
components["transformer"] = transformer

pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)

logger = logging.get_logger("diffusers.loaders.lora_pipeline")
logger.setLevel(logging.DEBUG)

out_features, in_features = pipe.transformer.x_embedder.weight.shape
rank = 4

shape_expander_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
shape_expander_lora_B = torch.nn.Linear(rank, out_features, bias=False)
lora_state_dict = {
"transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight,
"transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight,
}
with CaptureLogger(logger) as cap_logger:
pipe.load_lora_weights(lora_state_dict, "adapter-1")

self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
self.assertTrue(pipe.get_active_adapters() == ["adapter-1"])
self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))

_, _, inputs = self.get_dummy_inputs(with_generator=False)
lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

normal_lora_A = torch.nn.Linear(in_features, rank, bias=False)
normal_lora_B = torch.nn.Linear(rank, out_features, bias=False)
lora_state_dict = {
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
}

# The first lora expanded the input features of x_embedder. Here, we are trying to load a lora with the correct
# input features before expansion. This should raise an error about the weight shapes being incompatible.
self.assertRaisesRegex(
RuntimeError,
"size mismatch for x_embedder.lora_A.adapter-2.weight",
pipe.load_lora_weights,
lora_state_dict,
"adapter-2",
)
# We should have `adapter-1` as the only adapter.
self.assertTrue(pipe.get_active_adapters() == ["adapter-1"])

# Check if the output is the same after lora loading error
lora_output_after_error = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(np.allclose(lora_output, lora_output_after_error, atol=1e-3, rtol=1e-3))

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here I would run another inference round and make sure the outputs match with the LoRA that was correctly loaded. This will help us check if this loading error didn't leave the pipeline in a broken state, which is important.

# Test the opposite case where the first lora has the correct input features and the second lora has expanded input features.
# This should raise a runtime error on input shapes being incompatible. But it doesn't. This is because PEFT renames the
# original layers as `base_layer` and the lora layers with the adapter names. This makes our logic to check if a lora
# weight is compatible with the current model inadequate. This should be addressed when attempting support for
# https://github.com/huggingface/diffusers/issues/10180 (TODO)
components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
# Change the transformer config to mimic a real use case.
num_channels_without_control = 4
transformer = FluxTransformer2DModel.from_config(
components["transformer"].config, in_channels=num_channels_without_control
).to(torch_device)
components["transformer"] = transformer

pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)

logger = logging.get_logger("diffusers.loaders.lora_pipeline")
logger.setLevel(logging.DEBUG)

out_features, in_features = pipe.transformer.x_embedder.weight.shape
rank = 4

lora_state_dict = {
"transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
"transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
}

with CaptureLogger(logger) as cap_logger:
pipe.load_lora_weights(lora_state_dict, "adapter-1")
self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")

self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features)
self.assertTrue(pipe.transformer.config.in_channels == in_features)
self.assertFalse(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))

lora_state_dict = {
"transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight,
"transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight,
}

# We should check for input shapes being incompatible here. But because above mentioned issue is
# not a supported use case, and because of the PEFT renaming, we will currently have a shape
# mismatch error.
self.assertRaisesRegex(
RuntimeError,
"size mismatch for x_embedder.lora_A.adapter-2.weight",
pipe.load_lora_weights,
lora_state_dict,
"adapter-2",
)

@unittest.skip("Not supported in Flux.")
def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
pass
Expand Down
Loading