Skip to content
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ def save_model_card(
from diffusers import AutoPipelineForText2Image
import torch
{diffusers_imports_pivotal}
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline = AutoPipelineForText2Image.from_pretrained('stable-diffusion-v1-5/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('{repo_id}', weight_name='pytorch_lora_weights.safetensors')
{diffusers_example_pivotal}
image = pipeline('{validation_prompt if validation_prompt else instance_prompt}').images[0]
Expand Down
8 changes: 4 additions & 4 deletions scripts/convert_blipdiffusion_to_diffusers.py
Original file line number Diff line number Diff line change
Expand Up @@ -303,10 +303,10 @@ def save_blip_diffusion_model(model, args):
qformer = get_qformer(model)
qformer.eval()

text_encoder = ContextCLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
text_encoder = ContextCLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")

unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
unet = UNet2DConditionModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="unet")
vae.eval()
text_encoder.eval()
scheduler = PNDMScheduler(
Expand All @@ -316,7 +316,7 @@ def save_blip_diffusion_model(model, args):
set_alpha_to_one=False,
skip_prk_steps=True,
)
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
image_processor = BlipImageProcessor()
blip_diffusion = BlipDiffusionPipeline(
tokenizer=tokenizer,
Expand Down
2 changes: 1 addition & 1 deletion src/diffusers/loaders/single_file.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,7 +329,7 @@ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):

>>> # Enable float16 and move to GPU
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... torch_dtype=torch.float16,
... )
>>> pipeline.to("cuda")
Expand Down
6 changes: 3 additions & 3 deletions src/diffusers/loaders/textual_inversion.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ def load_textual_inversion(
from diffusers import StableDiffusionPipeline
import torch

model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

pipe.load_textual_inversion("sd-concepts-library/cat-toy")
Expand All @@ -352,7 +352,7 @@ def load_textual_inversion(
from diffusers import StableDiffusionPipeline
import torch

model_id = "runwayml/stable-diffusion-v1-5"
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")

pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
Expand Down Expand Up @@ -469,7 +469,7 @@ def unload_textual_inversion(
from diffusers import AutoPipelineForText2Image
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")

# Example 1
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):

>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
>>> pipe = StableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
... ).to("cuda")

>>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
Expand Down
16 changes: 8 additions & 8 deletions src/diffusers/pipelines/auto_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,7 +293,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
If you get the error message below, you need to finetune the weights for your downstream task:

```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Expand Down Expand Up @@ -385,7 +385,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
```py
>>> from diffusers import AutoPipelineForText2Image

>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
>>> image = pipeline(prompt).images[0]
```
"""
Expand Down Expand Up @@ -448,7 +448,7 @@ def from_pipe(cls, pipeline, **kwargs):
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image

>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
... )

>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i)
Expand Down Expand Up @@ -589,7 +589,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
If you get the error message below, you need to finetune the weights for your downstream task:

```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Expand Down Expand Up @@ -681,7 +681,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
```py
>>> from diffusers import AutoPipelineForImage2Image

>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image).images[0]
```
"""
Expand Down Expand Up @@ -756,7 +756,7 @@ def from_pipe(cls, pipeline, **kwargs):
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image

>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained(
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False
... "stable-diffusion-v1-5/stable-diffusion-v1-5", requires_safety_checker=False
... )

>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i)
Expand Down Expand Up @@ -900,7 +900,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
If you get the error message below, you need to finetune the weights for your downstream task:

```
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
```
Expand Down Expand Up @@ -992,7 +992,7 @@ def from_pretrained(cls, pretrained_model_or_path, **kwargs):
```py
>>> from diffusers import AutoPipelineForInpainting

>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5")
>>> pipeline = AutoPipelineForInpainting.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0]
```
"""
Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/pipelines/controlnet/pipeline_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )

>>> # speed up diffusion process with faster scheduler and memory optimization
Expand Down Expand Up @@ -198,7 +198,7 @@ class StableDiffusionControlNetPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@
>>> # load control net and stable diffusion v1-5
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
>>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )

>>> # speed up diffusion process with faster scheduler and memory optimization
Expand Down Expand Up @@ -168,7 +168,7 @@ class StableDiffusionControlNetImg2ImgPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@
... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
... )
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
... )

>>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
Expand Down Expand Up @@ -141,9 +141,9 @@ class StableDiffusionControlNetInpaintPipeline(
<Tip>

This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
([stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)) as well as
default text-to-image Stable Diffusion checkpoints
([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
([stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)). Default text-to-image
Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).

Expand All @@ -167,7 +167,7 @@ class StableDiffusionControlNetInpaintPipeline(
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1622,7 +1622,7 @@ def denoising_value_valid(dnv):

# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
# default case for stable-diffusion-v1-5/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@
... "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.float32
... )
>>> pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32
... )
>>> params["controlnet"] = controlnet_params

Expand Down Expand Up @@ -132,7 +132,7 @@ class FlaxStableDiffusionControlNetPipeline(FlaxDiffusionPipeline):
[`FlaxDPMSolverMultistepScheduler`].
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
about a model's potential harms.
feature_extractor ([`~transformers.CLIPImageProcessor`]):
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
Expand Down
10 changes: 5 additions & 5 deletions src/diffusers/pipelines/pipeline_flax_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,14 +237,14 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
If you get the error message below, you need to finetune the weights for your downstream task:

```
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Some weights of FlaxUNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
```

Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
Can be either:

- A string, the *repo id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained pipeline
- A string, the *repo id* (for example `stable-diffusion-v1-5/stable-diffusion-v1-5`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
using [`~FlaxDiffusionPipeline.save_pretrained`].
Expand Down Expand Up @@ -293,15 +293,15 @@ def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.P
>>> # Requires to be logged in to Hugging Face hub,
>>> # see more in [the documentation](https://huggingface.co/docs/hub/security-tokens)
>>> pipeline, params = FlaxDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5",
... "stable-diffusion-v1-5/stable-diffusion-v1-5",
... variant="bf16",
... dtype=jnp.bfloat16,
... )

>>> # Download pipeline, but use a different scheduler
>>> from diffusers import FlaxDPMSolverMultistepScheduler

>>> model_id = "runwayml/stable-diffusion-v1-5"
>>> model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
>>> dpmpp, dpmpp_state = FlaxDPMSolverMultistepScheduler.from_pretrained(
... model_id,
... subfolder="scheduler",
Expand Down Expand Up @@ -559,7 +559,7 @@ def components(self) -> Dict[str, Any]:
... )

>>> text2img = FlaxStableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
... "stable-diffusion-v1-5/stable-diffusion-v1-5", variant="bf16", dtype=jnp.bfloat16
... )
>>> img2img = FlaxStableDiffusionImg2ImgPipeline(**text2img.components)
```
Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/pipelines/pipeline_loading_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -813,9 +813,9 @@ def _maybe_raise_warning_for_inpainting(pipeline_class, pretrained_model_name_or
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
" checkpoint: https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting instead or adapting your"
f" checkpoint {pretrained_model_name_or_path} to the format of"
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
" https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting. Note that we do not actively maintain"
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
)
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)
Expand Down
Loading
Loading