Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 50 additions & 0 deletions docs/source/en/api/pipelines/lumina2.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,56 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers)

</Tip>

## Using Single File loading with Lumina Image 2.0

Single file loading for Lumina Image 2.0 is available for the `Lumina2Transformer2DModel`

```python
import torch
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline

ckpt_path = "https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0/blob/main/consolidated.00-of-01.pth"
transformer = Lumina2Transformer2DModel.from_single_file(
ckpt_path, torch_dtype=torch.bfloat16
)

pipe = Lumina2Text2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
image = pipe(
"a cat holding a sign that says hello",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
image.save("lumina-single-file.png")

```

## Using GGUF Quantized Checkpoints with Lumina Image 2.0

GGUF Quantized checkpoints for the `Lumina2Transformer2DModel` can be loaded via `from_single_file` with the `GGUFQuantizationConfig`

```python
from diffusers import Lumina2Transformer2DModel, Lumina2Text2ImgPipeline, GGUFQuantizationConfig

ckpt_path = "https://huggingface.co/calcuis/lumina-gguf/blob/main/lumina2-q4_0.gguf"
transformer = Lumina2Transformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)

pipe = Lumina2Text2ImgPipeline.from_pretrained(
"Alpha-VLLM/Lumina-Image-2.0", transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.enable_model_cpu_offload()
image = pipe(
"a cat holding a sign that says hello",
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
image.save("lumina-gguf.png")
```

## Lumina2Text2ImgPipeline

[[autodoc]] Lumina2Text2ImgPipeline
Expand Down
5 changes: 5 additions & 0 deletions src/diffusers/loaders/single_file_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@
convert_ldm_vae_checkpoint,
convert_ltx_transformer_checkpoint_to_diffusers,
convert_ltx_vae_checkpoint_to_diffusers,
convert_lumina2_to_diffusers,
convert_mochi_transformer_checkpoint_to_diffusers,
convert_sd3_transformer_checkpoint_to_diffusers,
convert_stable_cascade_unet_single_file_to_diffusers,
Expand Down Expand Up @@ -111,6 +112,10 @@
"checkpoint_mapping_fn": convert_auraflow_transformer_checkpoint_to_diffusers,
"default_subfolder": "transformer",
},
"Lumina2Transformer2DModel": {
"checkpoint_mapping_fn": convert_lumina2_to_diffusers,
"default_subfolder": "transformer",
},
}


Expand Down
77 changes: 77 additions & 0 deletions src/diffusers/loaders/single_file_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@
"mochi-1-preview": ["model.diffusion_model.blocks.0.attn.qkv_x.weight", "blocks.0.attn.qkv_x.weight"],
"hunyuan-video": "txt_in.individual_token_refiner.blocks.0.adaLN_modulation.1.bias",
"instruct-pix2pix": "model.diffusion_model.input_blocks.0.0.weight",
"lumina2": ["model.diffusion_model.cap_embedder.0.weight", "cap_embedder.0.weight"],
}

DIFFUSERS_DEFAULT_PIPELINE_PATHS = {
Expand Down Expand Up @@ -174,6 +175,7 @@
"mochi-1-preview": {"pretrained_model_name_or_path": "genmo/mochi-1-preview"},
"hunyuan-video": {"pretrained_model_name_or_path": "hunyuanvideo-community/HunyuanVideo"},
"instruct-pix2pix": {"pretrained_model_name_or_path": "timbrooks/instruct-pix2pix"},
"lumina2": {"pretrained_model_name_or_path": "Alpha-VLLM/Lumina-Image-2.0"},
}

# Use to configure model sample size when original config is provided
Expand Down Expand Up @@ -657,6 +659,9 @@ def infer_diffusers_model_type(checkpoint):
):
model_type = "instruct-pix2pix"

elif any(key in checkpoint for key in CHECKPOINT_KEY_NAMES["lumina2"]):
model_type = "lumina2"

else:
model_type = "v1"

Expand Down Expand Up @@ -2798,3 +2803,75 @@ def calculate_layers(keys, key_prefix):
converted_state_dict["pos_embed.proj.bias"] = checkpoint.pop("init_x_linear.bias")

return converted_state_dict


def convert_lumina2_to_diffusers(checkpoint, **kwargs):
converted_state_dict = {}

# Original Lumina-Image-2 has an extra norm paramter that is unused
# We just remove it here
checkpoint.pop("norm_final.weight", None)

# Comfy checkpoints add this prefix
keys = list(checkpoint.keys())
for k in keys:
if "model.diffusion_model." in k:
checkpoint[k.replace("model.diffusion_model.", "")] = checkpoint.pop(k)

LUMINA_KEY_MAP = {
"cap_embedder": "time_caption_embed.caption_embedder",
"t_embedder.mlp.0": "time_caption_embed.timestep_embedder.linear_1",
"t_embedder.mlp.2": "time_caption_embed.timestep_embedder.linear_2",
"attention": "attn",
".out.": ".to_out.0.",
"k_norm": "norm_k",
"q_norm": "norm_q",
"w1": "linear_1",
"w2": "linear_2",
"w3": "linear_3",
"adaLN_modulation.1": "norm1.linear",
}
ATTENTION_NORM_MAP = {
"attention_norm1": "norm1.norm",
"attention_norm2": "norm2",
}
CONTEXT_REFINER_MAP = {
"context_refiner.0.attention_norm1": "context_refiner.0.norm1",
"context_refiner.0.attention_norm2": "context_refiner.0.norm2",
"context_refiner.1.attention_norm1": "context_refiner.1.norm1",
"context_refiner.1.attention_norm2": "context_refiner.1.norm2",
}
FINAL_LAYER_MAP = {
"final_layer.adaLN_modulation.1": "norm_out.linear_1",
"final_layer.linear": "norm_out.linear_2",
}

def convert_lumina_attn_to_diffusers(tensor, diffusers_key):
q_dim = 2304
k_dim = v_dim = 768

to_q, to_k, to_v = torch.split(tensor, [q_dim, k_dim, v_dim], dim=0)

return {
diffusers_key.replace("qkv", "to_q"): to_q,
diffusers_key.replace("qkv", "to_k"): to_k,
diffusers_key.replace("qkv", "to_v"): to_v,
}

for key in keys:
diffusers_key = key
for k, v in CONTEXT_REFINER_MAP.items():
diffusers_key = diffusers_key.replace(k, v)
for k, v in FINAL_LAYER_MAP.items():
diffusers_key = diffusers_key.replace(k, v)
for k, v in ATTENTION_NORM_MAP.items():
diffusers_key = diffusers_key.replace(k, v)
for k, v in LUMINA_KEY_MAP.items():
diffusers_key = diffusers_key.replace(k, v)

if "qkv" in diffusers_key:
converted_state_dict.update(convert_lumina_attn_to_diffusers(checkpoint.pop(key), diffusers_key))
else:
converted_state_dict[diffusers_key] = checkpoint.pop(key)

return converted_state_dict
3 changes: 2 additions & 1 deletion src/diffusers/models/transformers/transformer_lumina2.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import PeftAdapterMixin
from ...loaders.single_file_model import FromOriginalModelMixin
from ...utils import logging
from ..attention import LuminaFeedForward
from ..attention_processor import Attention
Expand Down Expand Up @@ -333,7 +334,7 @@ def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor):
)


class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
class Lumina2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
r"""
Lumina2NextDiT: Diffusion model with a Transformer backbone.
Expand Down
74 changes: 74 additions & 0 deletions tests/single_file/test_lumina2_transformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
# coding=utf-8
# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch

from diffusers import (
Lumina2Transformer2DModel,
)
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
require_torch_accelerator,
torch_device,
)


enable_full_determinism()


@require_torch_accelerator
class Lumina2Transformer2DModelSingleFileTests(unittest.TestCase):
model_class = Lumina2Transformer2DModel
ckpt_path = "https://huggingface.co/Comfy-Org/Lumina_Image_2.0_Repackaged/blob/main/split_files/diffusion_models/lumina_2_model_bf16.safetensors"
alternate_keys_ckpt_paths = [
"https://huggingface.co/Comfy-Org/Lumina_Image_2.0_Repackaged/blob/main/split_files/diffusion_models/lumina_2_model_bf16.safetensors"
]

repo_id = "Alpha-VLLM/Lumina-Image-2.0"

def setUp(self):
super().setUp()
gc.collect()
backend_empty_cache(torch_device)

def tearDown(self):
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)

def test_single_file_components(self):
model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer")
model_single_file = self.model_class.from_single_file(self.ckpt_path)

PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"]
for param_name, param_value in model_single_file.config.items():
if param_name in PARAMS_TO_IGNORE:
continue
assert (
model.config[param_name] == param_value
), f"{param_name} differs between single file loading and pretrained loading"

def test_checkpoint_loading(self):
for ckpt_path in self.alternate_keys_ckpt_paths:
torch.cuda.empty_cache()
model = self.model_class.from_single_file(ckpt_path)

del model
gc.collect()
torch.cuda.empty_cache()