Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions examples/community/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ Please also check out our [Community Scripts](https://github.com/huggingface/dif
| Stable Diffusion Mixture Tiling Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SD 1.5](#stable-diffusion-mixture-tiling-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Canvas Pipeline SD 1.5 | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending. Works by defining a list of Text2Image region objects that detail the region of influence of each diffuser. | [Stable Diffusion Mixture Canvas Pipeline SD 1.5](#stable-diffusion-mixture-canvas-pipeline-sd-15) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/albarji/mixture-of-diffusers) | [Álvaro B Jiménez](https://github.com/albarji/) |
| Stable Diffusion Mixture Tiling Pipeline SDXL | A pipeline generates cohesive images by integrating multiple diffusion processes, each focused on a specific image region and considering boundary effects for smooth blending | [Stable Diffusion Mixture Tiling Pipeline SDXL](#stable-diffusion-mixture-tiling-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mixture-of-diffusers-sdxl-tiling) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
| Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL | This is an advanced pipeline that leverages ControlNet Tile and Mixture-of-Diffusers techniques, integrating tile diffusion directly into the latent space denoising process. Designed to overcome the limitations of conventional pixel-space tile processing, this pipeline delivers Super Resolution (SR) upscaling for higher-quality images, reduced processing time, and greater adaptability. | [Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL](#stable-diffusion-mod-controlnet-tile-sr-pipeline-sdxl) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/elismasilva/mod-control-tile-upscaler-sdxl) | [Eliseu Silva](https://github.com/DEVAIEXP/) |
| FABRIC - Stable Diffusion with feedback Pipeline | pipeline supports feedback from liked and disliked images | [Stable Diffusion Fabric Pipeline](#stable-diffusion-fabric-pipeline) | [Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/stable_diffusion_fabric.ipynb)| [Shauray Singh](https://shauray8.github.io/about_shauray/) |
| sketch inpaint - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion Pipeline](#stable-diffusion-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
| sketch inpaint xl - Inpainting with non-inpaint Stable Diffusion | sketch inpaint much like in automatic1111 | [Masked Im2Im Stable Diffusion XL Pipeline](#stable-diffusion-xl-masked-im2im) | - | [Anatoly Belikov](https://github.com/noskill) |
Expand Down Expand Up @@ -2630,6 +2631,103 @@ image = pipe(

![mixture_tiling_results](https://huggingface.co/datasets/elismasilva/results/resolve/main/mixture_of_diffusers_sdxl_1.png)

### Stable Diffusion MoD ControlNet Tile SR Pipeline SDXL

This pipeline implements the [MoD (Mixture-of-Diffusers)]("https://arxiv.org/pdf/2408.06072") tiled diffusion technique and combines it with SDXL's ControlNet Tile process to generate SR images.

This works better with 4x scales, but you can try adjusts parameters to higher scales.

````python
import torch
from diffusers import DiffusionPipeline, ControlNetUnionModel, AutoencoderKL, UniPCMultistepScheduler, UNet2DConditionModel
from diffusers.utils import load_image
from PIL import Image

device = "cuda"

# Initialize the models and pipeline
controlnet = ControlNetUnionModel.from_pretrained(
"brad-twinkl/controlnet-union-sdxl-1.0-promax", torch_dtype=torch.float16
).to(device=device)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to(device=device)

model_id = "SG161222/RealVisXL_V5.0"
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
vae=vae,
controlnet=controlnet,
custom_pipeline="mod_controlnet_tile_sr_sdxl",
use_safetensors=True,
variant="fp16",
).to(device)

unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True)

#pipe.enable_model_cpu_offload() # << Enable this if you have limited VRAM
pipe.enable_vae_tiling() # << Enable this if you have limited VRAM
pipe.enable_vae_slicing() # << Enable this if you have limited VRAM

# Set selected scheduler
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

# Load image
control_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1.jpg")
original_height = control_image.height
original_width = control_image.width
print(f"Current resolution: H:{original_height} x W:{original_width}")

# Pre-upscale image for tiling
resolution = 4096
tile_gaussian_sigma = 0.3
max_tile_size = 1024 # or 1280

current_size = max(control_image.size)
scale_factor = max(2, resolution / current_size)
new_size = (int(control_image.width * scale_factor), int(control_image.height * scale_factor))
image = control_image.resize(new_size, Image.LANCZOS)

# Update target height and width
target_height = image.height
target_width = image.width
print(f"Target resolution: H:{target_height} x W:{target_width}")

# Calculate overlap size
normal_tile_overlap, border_tile_overlap = pipe.calculate_overlap(target_width, target_height)

# Set other params
tile_weighting_method = pipe.TileWeightingMethod.COSINE.value
guidance_scale = 4
num_inference_steps = 35
denoising_strenght = 0.65
controlnet_strength = 1.0
prompt = "high-quality, noise-free edges, high quality, 4k, hd, 8k"
negative_prompt = "blurry, pixelated, noisy, low resolution, artifacts, poor details"

# Image generation
generated_image = pipe(
image=image,
control_image=control_image,
control_mode=[6],
controlnet_conditioning_scale=float(controlnet_strength),
prompt=prompt,
negative_prompt=negative_prompt,
normal_tile_overlap=normal_tile_overlap,
border_tile_overlap=border_tile_overlap,
height=target_height,
width=target_width,
original_size=(original_width, original_height),
target_size=(target_width, target_height),
guidance_scale=guidance_scale,
strength=float(denoising_strenght),
tile_weighting_method=tile_weighting_method,
max_tile_size=max_tile_size,
tile_gaussian_sigma=float(tile_gaussian_sigma),
num_inference_steps=num_inference_steps,
)["images"][0]
````
![Upscaled](https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/1_input_4x.png)

### TensorRT Inpainting Stable Diffusion Pipeline

The TensorRT Pipeline can be used to accelerate the Inpainting Stable Diffusion Inference run.
Expand Down
Loading
Loading