Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
37 changes: 37 additions & 0 deletions examples/community/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,6 +83,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
| [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111) | A diffusion process that denoises inputs at multiple resolutions jointly and uses a NestedUNet architecture where features and parameters for small scale inputs are nested within those of the large scales. See [original codebase](https://github.com/apple/ml-mdm). | [🪆Matryoshka Diffusion Models](#matryoshka-diffusion-models) | [![Hugging Face Space](https://img.shields.io/badge/🤗%20Hugging%20Face-Space-yellow)](https://huggingface.co/spaces/pcuenq/mdm) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/tolgacangoz/1f54875fc7aeaabcf284ebde64820966/matryoshka_hf.ipynb) | [M. Tolga Cangöz](https://github.com/tolgacangoz) |
| Stable Diffusion XL Attentive Eraser Pipeline |[[AAAI2025 Oral] Attentive Eraser](https://github.com/Anonym0u3/AttentiveEraser) is a novel tuning-free method that enhances object removal capabilities in pre-trained diffusion models.|[Stable Diffusion XL Attentive Eraser Pipeline](#stable-diffusion-xl-attentive-eraser-pipeline)|-|[Wenhao Sun](https://github.com/Anonym0u3) and [Benlei Cui](https://github.com/Benny079)|
| Perturbed-Attention Guidance |StableDiffusionPAGPipeline is a modification of StableDiffusionPipeline to support Perturbed-Attention Guidance (PAG).|[Perturbed-Attention Guidance](#perturbed-attention-guidance)|[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/perturbed_attention_guidance.ipynb)|[Hyoungwon Cho](https://github.com/HyoungwonCho)|
| CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |

To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.

Expand Down Expand Up @@ -5222,3 +5223,39 @@ with torch.no_grad():

In the folder examples/pixart there is also a script that can be used to train new models.
Please check the script `train_controlnet_hf_diffusers.sh` on how to start the training.

# CogVideoX DDIM Inversion Pipeline

This implementation performs DDIM inversion on the video based on CogVideoX and uses guided attention to reconstruct or edit the inversion latents.

## Example Usage

```python
import torch

from examples.community.cogvideox_ddim_inversion import CogVideoXPipelineForDDIMInversion


# Load pretrained pipeline
pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained(
"THUDM/CogVideoX1.5-5B",
torch_dtype=torch.bfloat16,
).to("cuda")

# Run DDIM inversion, and the videos will be generated in the output_path
output = pipeline_for_inversion(
prompt="prompt that describes the edited video",
video_path="path/to/input.mp4",
guidance_scale=6.0,
num_inference_steps=50,
skip_frames_start=0,
skip_frames_end=0,
frame_sample_step=None,
max_num_frames=81,
width=720,
height=480,
seed=42,
)
pipeline.export_latents_to_video(output.inverse_latents[-1], "path/to/inverse_video.mp4", fps=8)
pipeline.export_latents_to_video(output.recon_latents[-1], "path/to/recon_video.mp4", fps=8)
```
Loading
Loading