-
Couldn't load subscription status.
- Fork 6.5k
[ControlNet] Adds controlnet for SanaTransformer #11040
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 2 commits
Commits
Show all changes
24 commits
Select commit
Hold shift + click to select a range
321193b
added controlnet for sana transformer
ishan-modi 1955579
improve code quality
ishan-modi dfc396e
addressed PR comments
ishan-modi 009937b
bug fixes
ishan-modi 6a62c3e
added test cases
ishan-modi d698d81
update
ishan-modi 7f3cbc5
added dummy objects
ishan-modi 4145f6b
addressed PR comments
ishan-modi 62aa0a6
update
ishan-modi a4b701a
Forcing update
ishan-modi 4b86649
add to docs
ishan-modi e59208a
Merge branch 'main' into fixes-issue-10772
ishan-modi 6d01ea0
code quality
ishan-modi 3d085a2
addressed PR comments
ishan-modi dea5de5
addressed PR comments
ishan-modi e6ba267
update
ishan-modi 5776517
addressed PR comments
ishan-modi 344ee8a
added proper styling
ishan-modi b973cd0
update
ishan-modi e488bd8
Merge branch 'main' into fixes-issue-10772
ishan-modi cfe555f
Revert "added proper styling"
ishan-modi 86709f2
manually ordered
ishan-modi 3b8a9c0
Merge branch 'fixes-issue-10772' of https://github.com/ishan-modi/dif…
ishan-modi 0b20570
Apply suggestions from code review
a-r-r-o-w File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,241 @@ | ||
| #!/usr/bin/env python | ||
| from __future__ import annotations | ||
|
|
||
| import argparse | ||
| import os | ||
| from contextlib import nullcontext | ||
|
|
||
| import torch | ||
| from accelerate import init_empty_weights | ||
| from huggingface_hub import hf_hub_download, snapshot_download | ||
| from termcolor import colored | ||
|
|
||
| from diffusers import ( | ||
| SanaControlNetModel, | ||
| ) | ||
| from diffusers.models.modeling_utils import load_model_dict_into_meta | ||
| from diffusers.utils.import_utils import is_accelerate_available | ||
|
|
||
|
|
||
| CTX = init_empty_weights if is_accelerate_available else nullcontext | ||
|
|
||
| ckpt_ids = [ | ||
| "Efficient-Large-Model/Sana_1600M_1024px_BF16_ControlNet_HED/checkpoints/Sana_1600M_1024px_BF16_ControlNet_HED.pth", | ||
| "Efficient-Large-Model/Sana_600M_1024px_ControlNet_HED/checkpoints/Sana_600M_1024px_ControlNet_HED.pth", | ||
| ] | ||
a-r-r-o-w marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
|
|
||
| def main(args): | ||
| cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub") | ||
a-r-r-o-w marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids: | ||
| ckpt_id = args.orig_ckpt_path or ckpt_ids[0] | ||
| snapshot_download( | ||
| repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", | ||
| cache_dir=cache_dir_path, | ||
| repo_type="model", | ||
| ) | ||
| file_path = hf_hub_download( | ||
| repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", | ||
| filename=f"{'/'.join(ckpt_id.split('/')[2:])}", | ||
| cache_dir=cache_dir_path, | ||
| repo_type="model", | ||
| ) | ||
| else: | ||
| file_path = args.orig_ckpt_path | ||
a-r-r-o-w marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"])) | ||
a-r-r-o-w marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| all_state_dict = torch.load(file_path, weights_only=True) | ||
| state_dict = all_state_dict.pop("state_dict") | ||
| converted_state_dict = {} | ||
|
|
||
| # Patch embeddings. | ||
| converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") | ||
| converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") | ||
|
|
||
| # Caption projection. | ||
| converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") | ||
| converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") | ||
| converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") | ||
| converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") | ||
|
|
||
| # AdaLN-single LN | ||
| converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop( | ||
| "t_embedder.mlp.0.weight" | ||
| ) | ||
| converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") | ||
| converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop( | ||
| "t_embedder.mlp.2.weight" | ||
| ) | ||
| converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") | ||
|
|
||
| # Shared norm. | ||
| converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight") | ||
| converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias") | ||
|
|
||
| # y norm | ||
| converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight") | ||
|
|
||
| # Positional embedding interpolation scale. | ||
| interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0} | ||
|
|
||
| # ControlNet Input Projection. | ||
| converted_state_dict["input_block.weight"] = state_dict.pop("controlnet.0.before_proj.weight") | ||
| converted_state_dict["input_block.bias"] = state_dict.pop("controlnet.0.before_proj.bias") | ||
|
|
||
| for depth in range(7): | ||
| # Transformer blocks. | ||
| converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.scale_shift_table" | ||
| ) | ||
|
|
||
| # Linear Attention is all you need 🤘 | ||
| # Self attention. | ||
| q, k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.attn.qkv.weight"), 3, dim=0) | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v | ||
| # Projection. | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.attn.proj.weight" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.attn.proj.bias" | ||
| ) | ||
|
|
||
| # Feed-forward. | ||
| converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.weight" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.bias" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.weight" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.bias" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.mlp.point_conv.conv.weight" | ||
| ) | ||
|
|
||
| # Cross-attention. | ||
| q = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.weight") | ||
| q_bias = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.bias") | ||
| k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.weight"), 2, dim=0) | ||
| k_bias, v_bias = torch.chunk( | ||
| state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.bias"), 2, dim=0 | ||
| ) | ||
|
|
||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias | ||
|
|
||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.cross_attn.proj.weight" | ||
| ) | ||
| converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( | ||
| f"controlnet.{depth}.copied_block.cross_attn.proj.bias" | ||
| ) | ||
|
|
||
| # ControlNet After Projection | ||
| converted_state_dict[f"controlnet_blocks.{depth}.weight"] = state_dict.pop( | ||
| f"controlnet.{depth}.after_proj.weight" | ||
| ) | ||
| converted_state_dict[f"controlnet_blocks.{depth}.bias"] = state_dict.pop(f"controlnet.{depth}.after_proj.bias") | ||
|
|
||
| # ControlNet | ||
| with CTX(): | ||
| controlnet = SanaControlNetModel( | ||
| num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"], | ||
| attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"], | ||
| num_layers=model_kwargs[args.model_type]["num_layers"], | ||
| num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"], | ||
| cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"], | ||
| cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"], | ||
| caption_channels=2304, | ||
| sample_size=args.image_size // 32, | ||
| interpolation_scale=interpolation_scale[args.image_size], | ||
| ) | ||
|
|
||
| if is_accelerate_available(): | ||
| load_model_dict_into_meta(controlnet, converted_state_dict) | ||
| else: | ||
| controlnet.load_state_dict(converted_state_dict, strict=True, assign=True) | ||
|
|
||
| num_model_params = sum(p.numel() for p in controlnet.parameters()) | ||
| print(f"Total number of controlnet parameters: {num_model_params}") | ||
|
|
||
| controlnet = controlnet.to(weight_dtype) | ||
| controlnet.load_state_dict(converted_state_dict, strict=True) | ||
|
|
||
| print(f"Saving Sana ControlNet in Diffusers format in {args.dump_path}.") | ||
| controlnet.save_pretrained(args.dump_path) | ||
|
|
||
|
|
||
| DTYPE_MAPPING = { | ||
| "fp32": torch.float32, | ||
| "fp16": torch.float16, | ||
| "bf16": torch.bfloat16, | ||
| } | ||
|
|
||
| VARIANT_MAPPING = { | ||
| "fp32": None, | ||
| "fp16": "fp16", | ||
| "bf16": "bf16", | ||
| } | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| parser = argparse.ArgumentParser() | ||
|
|
||
| parser.add_argument( | ||
| "--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." | ||
| ) | ||
| parser.add_argument( | ||
| "--image_size", | ||
| default=1024, | ||
| type=int, | ||
| choices=[512, 1024, 2048, 4096], | ||
| required=False, | ||
| help="Image size of pretrained model, 512, 1024, 2048 or 4096.", | ||
| ) | ||
| parser.add_argument( | ||
| "--model_type", | ||
| default="SanaMS_1600M_P1_ControlNet_D7", | ||
| type=str, | ||
| choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28"], | ||
| ) | ||
| parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") | ||
| parser.add_argument("--dtype", default="fp16", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.") | ||
|
|
||
| args = parser.parse_args() | ||
|
|
||
| model_kwargs = { | ||
| "SanaMS_1600M_P1_ControlNet_D7": { | ||
| "num_attention_heads": 70, | ||
| "attention_head_dim": 32, | ||
| "num_cross_attention_heads": 20, | ||
| "cross_attention_head_dim": 112, | ||
| "cross_attention_dim": 2240, | ||
| "num_layers": 7, | ||
| }, | ||
| "SanaMS_600M_P1_ControlNet_D7": { | ||
| "num_attention_heads": 36, | ||
| "attention_head_dim": 32, | ||
| "num_cross_attention_heads": 16, | ||
| "cross_attention_head_dim": 72, | ||
| "cross_attention_dim": 1152, | ||
| "num_layers": 7, | ||
| }, | ||
| } | ||
|
|
||
| device = "cuda" if torch.cuda.is_available() else "cpu" | ||
| weight_dtype = DTYPE_MAPPING[args.dtype] | ||
| variant = VARIANT_MAPPING[args.dtype] | ||
|
|
||
| main(args) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.