Skip to content
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
Original file line number Diff line number Diff line change
Expand Up @@ -497,6 +497,8 @@ def __init__(
self.norm_out = MochiChunkedGroupNorm3D(block_out_channels[-1])
self.proj_out = nn.Linear(block_out_channels[-1], 2 * out_channels, bias=False)

self.gradient_checkpointing = False

def forward(
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
) -> torch.Tensor:
Expand Down
121 changes: 121 additions & 0 deletions tests/models/autoencoders/test_models_autoencoder_mochi.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from diffusers import AutoencoderKLMochi
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
torch_device,
)

from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin


enable_full_determinism()


class AutoencoderKLMochiTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
model_class = AutoencoderKLMochi
main_input_name = "sample"
base_precision = 1e-2


def get_autoencoder_kl_mochi_config(self):
return {
"in_channels": 15,
"out_channels": 3,
"latent_channels": 4,
"encoder_block_out_channels": (32, 32, 32, 32),
"decoder_block_out_channels": (32, 32, 32, 32),
"layers_per_block": (1, 1, 1, 1, 1),
"act_fn": "silu",
"scaling_factor": 1,
}

@property
def dummy_input(self):
batch_size = 2
num_frames = 7
num_channels = 3
sizes = (16, 16)

image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)

return {"sample": image}

@property
def input_shape(self):
return (3, 7, 16, 16)

@property
def output_shape(self):
return (3, 7, 16, 16)

def prepare_init_args_and_inputs_for_common(self):
init_dict = self.get_autoencoder_kl_mochi_config()
inputs_dict = self.dummy_input
return init_dict, inputs_dict

def test_gradient_checkpointing_is_applied(self):
expected_set = {
"MochiDecoder3D",
"MochiDownBlock3D",
"MochiEncoder3D",
"MochiMidBlock3D",
"MochiUpBlock3D",
}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

@unittest.skip("Unsupported test.")
def test_effective_gradient_checkpointing(self):
""" Fails because of conv_cache:
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_effective_gradient_checkpointing -
TypeError: ModelMixin.enable_gradient_checkpointing.<locals>._gradient_checkpointing_func() got an unexpected keyword argument 'conv_cache'
"""
pass
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this test should be made to pass. It fails because we don't accept kwargs in gradient checkpointing func:

def _gradient_checkpointing_func(module, *args):

Could you update the vae implementation to not pass conv_cache argument as a keyword arg and instead just use normal arg? LMK if you'd like me to take this up in a separate PR. Other than, changes LGTM, thanks!

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Done ✅


@unittest.skip("Unsupported test.")
def test_forward_with_norm_groups(self):
"""
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_forward_with_norm_groups -
TypeError: AutoencoderKLMochi.__init__() got an unexpected keyword argument 'norm_num_groups'
"""
pass


@unittest.skip("Unsupported test.")
def test_model_parallelism(self):
"""
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence -
RuntimeError: values expected sparse tensor layout but got Strided
"""
pass

@unittest.skip("Unsupported test.")
def test_outputs_equivalence(self):
"""
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence -
RuntimeError: values expected sparse tensor layout but got Strided
"""
pass

@unittest.skip("Unsupported test.")
def test_sharded_checkpoints_device_map(self):
"""
tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_sharded_checkpoints_device_map -
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:5!
"""
Loading