Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1608,3 +1608,64 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)

return converted_state_dict


def _convert_musubi_wan_lora_to_diffusers(state_dict):
# https://github.com/kohya-ss/musubi-tuner
converted_state_dict = {}
original_state_dict = {k[len("lora_unet_") :]: v for k, v in state_dict.items()}

num_blocks = len({k.split("blocks_")[1].split("_")[0] for k in original_state_dict})
is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict)

def get_alpha_scales(down_weight, key):
rank = down_weight.shape[0]
alpha = original_state_dict.pop(key + ".alpha").item()
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
scale_down = scale
scale_up = 1.0
while scale_down * 2 < scale_up:
scale_down *= 2
scale_up /= 2
return scale_down, scale_up

for i in range(num_blocks):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
down_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_self_attn_{o}")
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = up_weight * scale_up

# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}")
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up

if is_i2v_lora:
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}")
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up

# FFN
for o, c in zip(["ffn_0", "ffn_2"], ["net.0.proj", "net.2"]):
down_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_down.weight")
up_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_up.weight")
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_{o}")
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = down_weight * scale_down
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = up_weight * scale_up

if len(original_state_dict) > 0:
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}")

for key in list(converted_state_dict.keys()):
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)

return converted_state_dict
3 changes: 3 additions & 0 deletions src/diffusers/loaders/lora_pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
_convert_bfl_flux_control_lora_to_diffusers,
_convert_hunyuan_video_lora_to_diffusers,
_convert_kohya_flux_lora_to_diffusers,
_convert_musubi_wan_lora_to_diffusers,
_convert_non_diffusers_lora_to_diffusers,
_convert_non_diffusers_lumina2_lora_to_diffusers,
_convert_non_diffusers_wan_lora_to_diffusers,
Expand Down Expand Up @@ -4794,6 +4795,8 @@ def lora_state_dict(
)
if any(k.startswith("diffusion_model.") for k in state_dict):
state_dict = _convert_non_diffusers_wan_lora_to_diffusers(state_dict)
elif any(k.startswith("lora_unet_") for k in state_dict):
state_dict = _convert_musubi_wan_lora_to_diffusers(state_dict)

is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
Expand Down
Loading