-
Couldn't load subscription status.
- Fork 6.5k
support Wan-FLF2V #11353
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
support Wan-FLF2V #11353
Changes from 8 commits
ff6f0e6
c5fbcee
2ce7646
80a7df5
0cf4b40
1998a09
d42faa6
4ffef90
9431806
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -49,8 +49,10 @@ def __call__( | |
| ) -> torch.Tensor: | ||
| encoder_hidden_states_img = None | ||
| if attn.add_k_proj is not None: | ||
| encoder_hidden_states_img = encoder_hidden_states[:, :257] | ||
| encoder_hidden_states = encoder_hidden_states[:, 257:] | ||
| # 512 is the context length of the text encoder, hardcoded for now | ||
| image_context_length = encoder_hidden_states.shape[1] - 512 | ||
| encoder_hidden_states_img = encoder_hidden_states[:, :image_context_length] | ||
| encoder_hidden_states = encoder_hidden_states[:, image_context_length:] | ||
|
Comment on lines
-52
to
+55
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is this not backwards breaking? 👀 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. i will test it out :) |
||
| if encoder_hidden_states is None: | ||
| encoder_hidden_states = hidden_states | ||
|
|
||
|
|
@@ -108,14 +110,23 @@ def apply_rotary_emb(hidden_states: torch.Tensor, freqs: torch.Tensor): | |
|
|
||
|
|
||
| class WanImageEmbedding(torch.nn.Module): | ||
| def __init__(self, in_features: int, out_features: int): | ||
| def __init__(self, in_features: int, out_features: int, pos_embed_seq_len=None): | ||
| super().__init__() | ||
|
|
||
| self.norm1 = FP32LayerNorm(in_features) | ||
| self.ff = FeedForward(in_features, out_features, mult=1, activation_fn="gelu") | ||
| self.norm2 = FP32LayerNorm(out_features) | ||
| if pos_embed_seq_len is not None: | ||
| self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_seq_len, in_features)) | ||
| else: | ||
| self.pos_embed = None | ||
|
|
||
| def forward(self, encoder_hidden_states_image: torch.Tensor) -> torch.Tensor: | ||
| if self.pos_embed is not None: | ||
| batch_size, seq_len, embed_dim = encoder_hidden_states_image.shape | ||
| encoder_hidden_states_image = encoder_hidden_states_image.view(-1, 2 * seq_len, embed_dim) | ||
| encoder_hidden_states_image = encoder_hidden_states_image + self.pos_embed | ||
|
|
||
| hidden_states = self.norm1(encoder_hidden_states_image) | ||
| hidden_states = self.ff(hidden_states) | ||
| hidden_states = self.norm2(hidden_states) | ||
|
|
@@ -130,6 +141,7 @@ def __init__( | |
| time_proj_dim: int, | ||
| text_embed_dim: int, | ||
| image_embed_dim: Optional[int] = None, | ||
| pos_embed_seq_len: Optional[int] = None, | ||
| ): | ||
| super().__init__() | ||
|
|
||
|
|
@@ -141,7 +153,7 @@ def __init__( | |
|
|
||
| self.image_embedder = None | ||
| if image_embed_dim is not None: | ||
| self.image_embedder = WanImageEmbedding(image_embed_dim, dim) | ||
| self.image_embedder = WanImageEmbedding(image_embed_dim, dim, pos_embed_seq_len=pos_embed_seq_len) | ||
|
|
||
| def forward( | ||
| self, | ||
|
|
@@ -350,6 +362,7 @@ def __init__( | |
| image_dim: Optional[int] = None, | ||
| added_kv_proj_dim: Optional[int] = None, | ||
| rope_max_seq_len: int = 1024, | ||
| pos_embed_seq_len: Optional[int] = None, | ||
| ) -> None: | ||
| super().__init__() | ||
|
|
||
|
|
@@ -368,6 +381,7 @@ def __init__( | |
| time_proj_dim=inner_dim * 6, | ||
| text_embed_dim=text_dim, | ||
| image_embed_dim=image_dim, | ||
| pos_embed_seq_len=pos_embed_seq_len, | ||
| ) | ||
|
|
||
| # 3. Transformer blocks | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.