Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 41 additions & 3 deletions examples/controlnet/train_controlnet_sdxl.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,25 @@ def log_validation(vae, unet, controlnet, args, accelerator, weight_dtype, step,

for validation_prompt, validation_image in zip(validation_prompts, validation_images):
validation_image = Image.open(validation_image).convert("RGB")
validation_image = validation_image.resize((args.resolution, args.resolution))

try:
interpolation = getattr(transforms.InterpolationMode, args.image_interpolation_mode.upper())
except (AttributeError, KeyError):
supported_interpolation_modes = [
f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__")
]
raise ValueError(
f"Interpolation mode {args.image_interpolation_mode} is not supported. "
f"Please select one of the following: {', '.join(supported_interpolation_modes)}"
)

transform = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=interpolation),
transforms.CenterCrop(args.resolution),
]
)
validation_image = transform(validation_image)

images = []

Expand Down Expand Up @@ -587,6 +605,15 @@ def parse_args(input_args=None):
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--image_interpolation_mode",
type=str,
default="lanczos",
choices=[
f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__")
],
help="The image interpolation method to use for resizing images.",
)

if input_args is not None:
args = parser.parse_args(input_args)
Expand Down Expand Up @@ -732,9 +759,20 @@ def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prom


def prepare_train_dataset(dataset, accelerator):
try:
interpolation_mode = getattr(transforms.InterpolationMode, args.image_interpolation_mode.upper())
except (AttributeError, KeyError):
supported_interpolation_modes = [
f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__")
]
raise ValueError(
f"Interpolation mode {args.image_interpolation_mode} is not supported. "
f"Please select one of the following: {', '.join(supported_interpolation_modes)}"
)

image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.Resize(args.resolution, interpolation=interpolation_mode),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
Expand All @@ -743,7 +781,7 @@ def prepare_train_dataset(dataset, accelerator):

conditioning_image_transforms = transforms.Compose(
[
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.Resize(args.resolution, interpolation=interpolation_mode),
transforms.CenterCrop(args.resolution),
transforms.ToTensor(),
]
Expand Down
Loading