Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 51 additions & 36 deletions src/diffusers/loaders/lora_conversion_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1596,7 +1596,10 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
converted_state_dict = {}
original_state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()}

num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in original_state_dict if "blocks." in k})
block_numbers = {int(k.split(".")[1]) for k in original_state_dict if k.startswith("blocks.")}
min_block = min(block_numbers)
max_block = max(block_numbers)

is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict)
lora_down_key = "lora_A" if any("lora_A" in k for k in original_state_dict) else "lora_down"
lora_up_key = "lora_B" if any("lora_B" in k for k in original_state_dict) else "lora_up"
Expand All @@ -1622,45 +1625,57 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
# For the `diff_b` keys, we treat them as lora_bias.
# https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraConfig.lora_bias

for i in range(num_blocks):
for i in range(min_block, max_block + 1):
# Self-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.self_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.self_attn.{o}.diff_b"
)
original_key = f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn1.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn1.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.self_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn1.{c}.lora_B.bias"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

# Cross-attention
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.diff_b"
)
original_key = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.bias"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

if is_i2v_lora:
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]):
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
)
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
)
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.cross_attn.{o}.diff_b"
)
original_key = f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_A.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.weight"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

original_key = f"blocks.{i}.cross_attn.{o}.diff_b"
converted_key = f"blocks.{i}.attn2.{c}.lora_B.bias"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

# FFN
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]):
Expand All @@ -1674,10 +1689,10 @@ def _convert_non_diffusers_wan_lora_to_diffusers(state_dict):
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

if f"blocks.{i}.{o}.diff_b" in original_state_dict:
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.bias"] = original_state_dict.pop(
f"blocks.{i}.{o}.diff_b"
)
original_key = f"blocks.{i}.{o}.diff_b"
converted_key = f"blocks.{i}.ffn.{c}.lora_B.bias"
if original_key in original_state_dict:
converted_state_dict[converted_key] = original_state_dict.pop(original_key)

# Remaining.
if original_state_dict:
Expand Down