-
Couldn't load subscription status.
- Fork 6.5k
Kontext training #11813
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Kontext training #11813
Changes from 21 commits
Commits
Show all changes
22 commits
Select commit
Hold shift + click to select a range
35bebc7
support flux kontext
a-r-r-o-w 51fcdf8
make fix-copies
a-r-r-o-w d242d02
add example
a-r-r-o-w 01e521a
Merge branch 'main' into integrations/flux-kontext
a-r-r-o-w 36159dd
add tests
a-r-r-o-w cc4f9ab
update docs
a-r-r-o-w e5c6369
Merge branch 'main' into integrations/flux-kontext-latest
a-r-r-o-w e8ae029
update
a-r-r-o-w 2e243c9
add note on integrity checker
a-r-r-o-w 484790d
initial commit
linoytsaban 902f6f5
initial commit
linoytsaban a36849b
add readme section and fixes in the training script.
sayakpaul 9ebdde2
add test
sayakpaul 611cbca
rectify ckpt_id
sayakpaul 902574c
fix ckpt
sayakpaul d0de091
fixes
sayakpaul 45990cd
change id
sayakpaul de7bc7c
Merge branch 'main' into integrations/kontext-training
linoytsaban 11b9285
merge main
sayakpaul 696efd7
update
sayakpaul a07bb9a
Update examples/dreambooth/train_dreambooth_lora_flux_kontext.py
sayakpaul f63402d
Update examples/dreambooth/README_flux.md
linoytsaban File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
281 changes: 281 additions & 0 deletions
281
examples/dreambooth/test_dreambooth_lora_flux_kontext.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,281 @@ | ||
| # coding=utf-8 | ||
| # Copyright 2025 HuggingFace Inc. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| import json | ||
| import logging | ||
| import os | ||
| import sys | ||
| import tempfile | ||
|
|
||
| import safetensors | ||
|
|
||
| from diffusers.loaders.lora_base import LORA_ADAPTER_METADATA_KEY | ||
|
|
||
|
|
||
| sys.path.append("..") | ||
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | ||
|
|
||
|
|
||
| logging.basicConfig(level=logging.DEBUG) | ||
|
|
||
| logger = logging.getLogger() | ||
| stream_handler = logging.StreamHandler(sys.stdout) | ||
| logger.addHandler(stream_handler) | ||
|
|
||
|
|
||
| class DreamBoothLoRAFluxKontext(ExamplesTestsAccelerate): | ||
| instance_data_dir = "docs/source/en/imgs" | ||
| instance_prompt = "photo" | ||
| pretrained_model_name_or_path = "hf-internal-testing/tiny-flux-kontext-pipe" | ||
| script_path = "examples/dreambooth/train_dreambooth_lora_flux_kontext.py" | ||
| transformer_layer_type = "single_transformer_blocks.0.attn.to_k" | ||
|
|
||
| def test_dreambooth_lora_flux_kontext(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --instance_prompt {self.instance_prompt} | ||
| --resolution 64 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. | ||
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_text_encoder_flux_kontext(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --instance_prompt {self.instance_prompt} | ||
| --resolution 64 | ||
| --train_batch_size 1 | ||
| --train_text_encoder | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| starts_with_expected_prefix = all( | ||
| (key.startswith("transformer") or key.startswith("text_encoder")) for key in lora_state_dict.keys() | ||
| ) | ||
| self.assertTrue(starts_with_expected_prefix) | ||
|
|
||
| def test_dreambooth_lora_latent_caching(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --instance_prompt {self.instance_prompt} | ||
| --resolution 64 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --cache_latents | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. | ||
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_layers(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --instance_prompt {self.instance_prompt} | ||
| --resolution 64 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --cache_latents | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lora_layers {self.transformer_layer_type} | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | ||
|
|
||
| # make sure the state_dict has the correct naming in the parameters. | ||
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | ||
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | ||
| self.assertTrue(is_lora) | ||
|
|
||
| # when not training the text encoder, all the parameters in the state dict should start | ||
| # with `"transformer"` in their names. In this test, we only params of | ||
| # transformer.single_transformer_blocks.0.attn.to_k should be in the state dict | ||
| starts_with_transformer = all( | ||
| key.startswith("transformer.single_transformer_blocks.0.attn.to_k") for key in lora_state_dict.keys() | ||
| ) | ||
| self.assertTrue(starts_with_transformer) | ||
|
|
||
| def test_dreambooth_lora_flux_kontext_checkpointing_checkpoints_total_limit(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --instance_prompt={self.instance_prompt} | ||
| --resolution=64 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=6 | ||
| --checkpoints_total_limit=2 | ||
| --checkpointing_steps=2 | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
|
|
||
| self.assertEqual( | ||
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | ||
| {"checkpoint-4", "checkpoint-6"}, | ||
| ) | ||
|
|
||
| def test_dreambooth_lora_flux_kontext_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --instance_prompt={self.instance_prompt} | ||
| --resolution=64 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=4 | ||
| --checkpointing_steps=2 | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
|
|
||
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) | ||
|
|
||
| resume_run_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | ||
| --instance_data_dir={self.instance_data_dir} | ||
| --output_dir={tmpdir} | ||
| --instance_prompt={self.instance_prompt} | ||
| --resolution=64 | ||
| --train_batch_size=1 | ||
| --gradient_accumulation_steps=1 | ||
| --max_train_steps=8 | ||
| --checkpointing_steps=2 | ||
| --resume_from_checkpoint=checkpoint-4 | ||
| --checkpoints_total_limit=2 | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + resume_run_args) | ||
|
|
||
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) | ||
|
|
||
| def test_dreambooth_lora_with_metadata(self): | ||
| # Use a `lora_alpha` that is different from `rank`. | ||
| lora_alpha = 8 | ||
| rank = 4 | ||
| with tempfile.TemporaryDirectory() as tmpdir: | ||
| test_args = f""" | ||
| {self.script_path} | ||
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | ||
| --instance_data_dir {self.instance_data_dir} | ||
| --instance_prompt {self.instance_prompt} | ||
| --resolution 64 | ||
| --train_batch_size 1 | ||
| --gradient_accumulation_steps 1 | ||
| --max_train_steps 2 | ||
| --lora_alpha={lora_alpha} | ||
| --rank={rank} | ||
| --learning_rate 5.0e-04 | ||
| --scale_lr | ||
| --lr_scheduler constant | ||
| --lr_warmup_steps 0 | ||
| --output_dir {tmpdir} | ||
| """.split() | ||
|
|
||
| run_command(self._launch_args + test_args) | ||
| # save_pretrained smoke test | ||
| state_dict_file = os.path.join(tmpdir, "pytorch_lora_weights.safetensors") | ||
| self.assertTrue(os.path.isfile(state_dict_file)) | ||
|
|
||
| # Check if the metadata was properly serialized. | ||
| with safetensors.torch.safe_open(state_dict_file, framework="pt", device="cpu") as f: | ||
| metadata = f.metadata() or {} | ||
|
|
||
| metadata.pop("format", None) | ||
| raw = metadata.get(LORA_ADAPTER_METADATA_KEY) | ||
| if raw: | ||
| raw = json.loads(raw) | ||
|
|
||
| loaded_lora_alpha = raw["transformer.lora_alpha"] | ||
| self.assertTrue(loaded_lora_alpha == lora_alpha) | ||
| loaded_lora_rank = raw["transformer.r"] | ||
| self.assertTrue(loaded_lora_rank == rank) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@linoytsaban