Skip to content
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@
"loaders": ["FromOriginalModelMixin"],
"models": [],
"pipelines": [],
"quantizers.pipe_quant_config": ["PipelineQuantizationConfig"],
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So that we can do from diffusers import PipelineQuantizationConfig.

"quantizers.quantization_config": [],
"schedulers": [],
"utils": [
Expand Down
2 changes: 2 additions & 0 deletions src/diffusers/pipelines/pipeline_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -1096,6 +1096,8 @@ def load_module(name, value):
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
if device_map is not None:
setattr(model, "hf_device_map", final_device_map)
if quantization_config is not None:
setattr(model, "quantization_config", quantization_config)
return model

@property
Expand Down
178 changes: 1 addition & 177 deletions src/diffusers/quantizers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,183 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Dict, List, Optional, Union

from ..utils import is_transformers_available, logging
from .auto import DiffusersAutoQuantizer
from .base import DiffusersQuantizer
from .quantization_config import QuantizationConfigMixin as DiffQuantConfigMixin


try:
from transformers.utils.quantization_config import QuantizationConfigMixin as TransformersQuantConfigMixin
except ImportError:

class TransformersQuantConfigMixin:
pass


logger = logging.get_logger(__name__)


class PipelineQuantizationConfig:
"""
Configuration class to be used when applying quantization on-the-fly to [`~DiffusionPipeline.from_pretrained`].

Args:
quant_backend (`str`): Quantization backend to be used. When using this option, we assume that the backend
is available to both `diffusers` and `transformers`.
quant_kwargs (`dict`): Params to initialize the quantization backend class.
components_to_quantize (`list`): Components of a pipeline to be quantized.
quant_mapping (`dict`): Mapping defining the quantization specs to be used for the pipeline
components. When using this argument, users are not expected to provide `quant_backend`, `quant_kawargs`,
and `components_to_quantize`.
"""

def __init__(
self,
quant_backend: str = None,
quant_kwargs: Dict[str, Union[str, float, int, dict]] = None,
components_to_quantize: Optional[List[str]] = None,
quant_mapping: Dict[str, Union[DiffQuantConfigMixin, "TransformersQuantConfigMixin"]] = None,
):
self.quant_backend = quant_backend
# Initialize kwargs to be {} to set to the defaults.
self.quant_kwargs = quant_kwargs or {}
self.components_to_quantize = components_to_quantize
self.quant_mapping = quant_mapping

self.post_init()

def post_init(self):
quant_mapping = self.quant_mapping
self.is_granular = True if quant_mapping is not None else False

self._validate_init_args()

def _validate_init_args(self):
if self.quant_backend and self.quant_mapping:
raise ValueError("Both `quant_backend` and `quant_mapping` cannot be specified at the same time.")

if not self.quant_mapping and not self.quant_backend:
raise ValueError("Must provide a `quant_backend` when not providing a `quant_mapping`.")

if not self.quant_kwargs and not self.quant_mapping:
raise ValueError("Both `quant_kwargs` and `quant_mapping` cannot be None.")

if self.quant_backend is not None:
self._validate_init_kwargs_in_backends()

if self.quant_mapping is not None:
self._validate_quant_mapping_args()

def _validate_init_kwargs_in_backends(self):
quant_backend = self.quant_backend

self._check_backend_availability(quant_backend)

quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()

if quant_config_mapping_transformers is not None:
init_kwargs_transformers = inspect.signature(quant_config_mapping_transformers[quant_backend].__init__)
init_kwargs_transformers = {name for name in init_kwargs_transformers.parameters if name != "self"}
else:
init_kwargs_transformers = None

init_kwargs_diffusers = inspect.signature(quant_config_mapping_diffusers[quant_backend].__init__)
init_kwargs_diffusers = {name for name in init_kwargs_diffusers.parameters if name != "self"}

if init_kwargs_transformers != init_kwargs_diffusers:
raise ValueError(
"The signatures of the __init__ methods of the quantization config classes in `diffusers` and `transformers` don't match. "
f"Please provide a `quant_mapping` instead, in the {self.__class__.__name__} class. Refer to [the docs](https://huggingface.co/docs/diffusers/main/en/quantization/overview#pipeline-level-quantization) to learn more about how "
"this mapping would look like."
)

def _validate_quant_mapping_args(self):
quant_mapping = self.quant_mapping
transformers_map, diffusers_map = self._get_quant_config_list()

available_transformers = list(transformers_map.values()) if transformers_map else None
available_diffusers = list(diffusers_map.values())

for module_name, config in quant_mapping.items():
if any(isinstance(config, cfg) for cfg in available_diffusers):
continue

if available_transformers and any(isinstance(config, cfg) for cfg in available_transformers):
continue

if available_transformers:
raise ValueError(
f"Provided config for module_name={module_name} could not be found. "
f"Available diffusers configs: {available_diffusers}; "
f"Available transformers configs: {available_transformers}."
)
else:
raise ValueError(
f"Provided config for module_name={module_name} could not be found. "
f"Available diffusers configs: {available_diffusers}."
)

def _check_backend_availability(self, quant_backend: str):
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()

available_backends_transformers = (
list(quant_config_mapping_transformers.keys()) if quant_config_mapping_transformers else None
)
available_backends_diffusers = list(quant_config_mapping_diffusers.keys())

if (
available_backends_transformers and quant_backend not in available_backends_transformers
) or quant_backend not in quant_config_mapping_diffusers:
error_message = f"Provided quant_backend={quant_backend} was not found."
if available_backends_transformers:
error_message += f"\nAvailable ones (transformers): {available_backends_transformers}."
error_message += f"\nAvailable ones (diffusers): {available_backends_diffusers}."
raise ValueError(error_message)

def _resolve_quant_config(self, is_diffusers: bool = True, module_name: str = None):
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list()

quant_mapping = self.quant_mapping
components_to_quantize = self.components_to_quantize

# Granular case
if self.is_granular and module_name in quant_mapping:
logger.debug(f"Initializing quantization config class for {module_name}.")
config = quant_mapping[module_name]
return config

# Global config case
else:
should_quantize = False
# Only quantize the modules requested for.
if components_to_quantize and module_name in components_to_quantize:
should_quantize = True
# No specification for `components_to_quantize` means all modules should be quantized.
elif not self.is_granular and not components_to_quantize:
should_quantize = True

if should_quantize:
logger.debug(f"Initializing quantization config class for {module_name}.")
mapping_to_use = quant_config_mapping_diffusers if is_diffusers else quant_config_mapping_transformers
quant_config_cls = mapping_to_use[self.quant_backend]
quant_kwargs = self.quant_kwargs
return quant_config_cls(**quant_kwargs)

# Fallback: no applicable configuration found.
return None

def _get_quant_config_list(self):
if is_transformers_available():
from transformers.quantizers.auto import (
AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_transformers,
)
else:
quant_config_mapping_transformers = None

from ..quantizers.auto import AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_diffusers

return quant_config_mapping_transformers, quant_config_mapping_diffusers
from .pipe_quant_config import PipelineQuantizationConfig
Loading