Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/diffusers/loaders/lora_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -470,7 +470,7 @@ def _func_optionally_disable_offloading(_pipeline):
for _, component in _pipeline.components.items():
if not isinstance(component, nn.Module) or not hasattr(component, "_hf_hook"):
continue
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)

return (is_model_cpu_offload, is_sequential_cpu_offload, is_group_offload)

Expand Down
31 changes: 31 additions & 0 deletions tests/lora/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2510,3 +2510,34 @@ def test_group_offloading_inference_denoiser(self, offload_type, use_stream):
# materializes the test methods on invocation which cannot be overridden.
return
self._test_group_offloading_inference_denoiser(offload_type, use_stream)

@require_torch_accelerator
def test_lora_loading_model_cpu_offload(self):
components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
_, _, inputs = self.get_dummy_inputs(with_generator=False)
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)

denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
denoiser.add_adapter(denoiser_lora_config)
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

with tempfile.TemporaryDirectory() as tmpdirname:
modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
self.pipeline_class.save_lora_weights(
save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
)
# reinitialize the pipeline to mimic the inference workflow.
components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
pipe = self.pipeline_class(**components)
pipe.enable_model_cpu_offload(device=torch_device)
pipe.load_lora_weights(tmpdirname)
denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

output_lora_loaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
self.assertTrue(np.allclose(output_lora, output_lora_loaded, atol=1e-3, rtol=1e-3))