Skip to content
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/source/en/api/loaders/lora.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ LoRA is a fast and lightweight training method that inserts and trains a signifi
- [`CogView4LoraLoaderMixin`] provides similar functions for [CogView4](https://huggingface.co/docs/diffusers/main/en/api/pipelines/cogview4).
- [`AmusedLoraLoaderMixin`] is for the [`AmusedPipeline`].
- [`HiDreamImageLoraLoaderMixin`] provides similar functions for [HiDream Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/hidream)
- [`QwenImageLoraLoaderMixin`] provides similar functions for [Qwen Image](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen)
- [`LoraBaseMixin`] provides a base class with several utility methods to fuse, unfuse, unload, LoRAs and more.

<Tip>
Expand Down Expand Up @@ -105,6 +106,10 @@ To learn more about how to load LoRA weights, see the [LoRA](../../using-diffuse

[[autodoc]] loaders.lora_pipeline.HiDreamImageLoraLoaderMixin

## QwenImageLoraLoaderMixin

[[autodoc]] loaders.lora_pipeline.QwenImageLoraLoaderMixin

## LoraBaseMixin

[[autodoc]] loaders.lora_base.LoraBaseMixin
136 changes: 136 additions & 0 deletions examples/dreambooth/README_qwen.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
# DreamBooth training example for Qwen Image

[DreamBooth](https://huggingface.co/papers/2208.12242) is a method to personalize text2image models like stable diffusion given just a few (3~5) images of a subject.

The `train_dreambooth_lora_qwen_image.py` script shows how to implement the training procedure with [LoRA](https://huggingface.co/docs/peft/conceptual_guides/adapter#low-rank-adaptation-lora) and adapt it for [Qwen Image](https://huggingface.co/Qwen/Qwen-Image).


This will also allow us to push the trained model parameters to the Hugging Face Hub platform.

## Running locally with PyTorch

### Installing the dependencies

Before running the scripts, make sure to install the library's training dependencies:

**Important**

To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment:

```bash
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
```

Then cd in the `examples/dreambooth` folder and run
```bash
pip install -r requirements_sana.txt
```

And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:

```bash
accelerate config
```

Or for a default accelerate configuration without answering questions about your environment

```bash
accelerate config default
```

Or if your environment doesn't support an interactive shell (e.g., a notebook)

```python
from accelerate.utils import write_basic_config
write_basic_config()
```

When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups.
Note also that we use PEFT library as backend for LoRA training, make sure to have `peft>=0.14.0` installed in your environment.


### Dog toy example

Now let's get our dataset. For this example we will use some dog images: https://huggingface.co/datasets/diffusers/dog-example.

Let's first download it locally:

```python
from huggingface_hub import snapshot_download

local_dir = "./dog"
snapshot_download(
"diffusers/dog-example",
local_dir=local_dir, repo_type="dataset",
ignore_patterns=".gitattributes",
)
```

This will also allow us to push the trained LoRA parameters to the Hugging Face Hub platform.

Now, we can launch training using:

```bash
export MODEL_NAME="Qwen/Qwen-Image"
export INSTANCE_DIR="dog"
export OUTPUT_DIR="trained-sana-lora"

accelerate launch train_dreambooth_lora_sana.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--mixed_precision="bf16" \
--instance_prompt="a photo of sks dog" \
--resolution=1024 \
--train_batch_size=1 \
--gradient_accumulation_steps=4 \
--use_8bit_adam \
--learning_rate=2e-4 \
--report_to="wandb" \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps=500 \
--validation_prompt="A photo of sks dog in a bucket" \
--validation_epochs=25 \
--seed="0" \
--push_to_hub
```

For using `push_to_hub`, make you're logged into your Hugging Face account:

```bash
hf auth login
```

To better track our training experiments, we're using the following flags in the command above:

* `report_to="wandb` will ensure the training runs are tracked on [Weights and Biases](https://wandb.ai/site). To use it, be sure to install `wandb` with `pip install wandb`. Don't forget to call `wandb login <your_api_key>` before training if you haven't done it before.
* `validation_prompt` and `validation_epochs` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.

## Notes

Additionally, we welcome you to explore the following CLI arguments:

* `--lora_layers`: The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v" will result in lora training of attention layers only.
* `--max_sequence_length`: Maximum sequence length to use for text embeddings.

We provide several options for optimizing memory optimization:

* `--offload`: When enabled, we will offload the text encoder and VAE to CPU, when they are not used.
* `cache_latents`: When enabled, we will pre-compute the latents from the input images with the VAE and remove the VAE from memory once done.
* `--use_8bit_adam`: When enabled, we will use the 8bit version of AdamW provided by the `bitsandbytes` library.

Refer to the [official documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/qwen) of the `QwenImagePipeline` to know more about the models available under the SANA family and their preferred dtypes during inference.

## Using quantization

You can quantize the base model with [`bitsandbytes`](https://huggingface.co/docs/bitsandbytes/index) to reduce memory usage. To do so, pass a JSON file path to `--bnb_quantization_config_path`. This file should hold the configuration to initialize `BitsAndBytesConfig`. Below is an example JSON file:

```json
{
"load_in_4bit": true,
"bnb_4bit_quant_type": "nf4"
}
```
Loading
Loading