Skip to content
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions src/diffusers/quantizers/gguf/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -428,9 +428,57 @@ def dequantize_blocks_Q2_K(blocks, block_size, type_size, dtype=None):
def dequantize_blocks_BF16(blocks, block_size, type_size, dtype=None):
return (blocks.view(torch.int16).to(torch.int32) << 16).view(torch.float32)

# this part from calcuis (gguf.org)
# more info: https://github.com/calcuis/gguf-connector/blob/main/src/gguf_connector/quant2c.py

def dequantize_blocks_IQ4_NL(blocks, block_size, type_size, dtype=None):
kvalues = torch.tensor(
[-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113],
dtype=torch.float32, device=blocks.device
)
n_blocks = blocks.shape[0]
d, qs = split_block_dims(blocks, 2)
d = d.view(torch.float16).to(dtype)
qs = qs.reshape((n_blocks, -1, 1, block_size // 2)) >> torch.tensor(
[0, 4], device=blocks.device, dtype=torch.uint8
).reshape((1, 1, 2, 1))
qs = (qs & 15).reshape((n_blocks, -1)).to(torch.int64)
kvalues = kvalues.view(1, 1, 16)
qs = qs.unsqueeze(-1)
qs = torch.gather(kvalues.expand(qs.shape[0], qs.shape[1], 16), 2, qs)
qs = qs.squeeze(-1).to(dtype)
return d * qs

def dequantize_blocks_IQ4_XS(blocks, block_size, type_size, dtype=None):
kvalues = torch.tensor(
[-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113],
dtype=torch.float32, device=blocks.device
)
n_blocks = blocks.shape[0]
d, scales_h, scales_l, qs = split_block_dims(blocks, 2, 2, QK_K // 64)
d = d.view(torch.float16).to(dtype)
scales_h = scales_h.view(torch.int16)
scales_l = scales_l.reshape((n_blocks, -1, 1)) >> torch.tensor(
[0, 4], device=blocks.device, dtype=torch.uint8).reshape((1, 1, 2))
scales_h = scales_h.reshape((n_blocks, 1, -1)) >> torch.tensor(
[2 * i for i in range(QK_K // 32)], device=blocks.device, dtype=torch.uint8).reshape((1, -1, 1))
scales_l = scales_l.reshape((n_blocks, -1)) & 0x0F
scales_h = scales_h.reshape((n_blocks, -1)) & 0x03
scales = (scales_l | (scales_h << 4)) - 32
dl = (d * scales.to(dtype)).reshape((n_blocks, -1, 1))
shifts_q = torch.tensor([0, 4], device=blocks.device, dtype=torch.uint8).reshape(1, 1, 2, 1)
qs = qs.reshape((n_blocks, -1, 1, 16)) >> shifts_q
qs = (qs & 15).reshape((n_blocks, -1, 32)).to(torch.int64)
kvalues = kvalues.view(1, 1, 1, 16)
qs = qs.unsqueeze(-1)
qs = torch.gather(kvalues.expand(qs.shape[0], qs.shape[1], qs.shape[2], 16), 3, qs)
qs = qs.squeeze(-1).to(dtype)
return (dl * qs).reshape(n_blocks, -1)

GGML_QUANT_SIZES = gguf.GGML_QUANT_SIZES
dequantize_functions = {
gguf.GGMLQuantizationType.IQ4_NL: dequantize_blocks_IQ4_NL,
gguf.GGMLQuantizationType.IQ4_XS: dequantize_blocks_IQ4_XS,
gguf.GGMLQuantizationType.BF16: dequantize_blocks_BF16,
gguf.GGMLQuantizationType.Q8_0: dequantize_blocks_Q8_0,
gguf.GGMLQuantizationType.Q5_1: dequantize_blocks_Q5_1,
Expand Down
Loading