Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,8 +338,8 @@
"StableDiffusion3ControlNetPipeline",
"StableDiffusion3Img2ImgPipeline",
"StableDiffusion3InpaintPipeline",
"StableDiffusion3PAGPipeline",
"StableDiffusion3PAGImg2ImgPipeline",
"StableDiffusion3PAGPipeline",
"StableDiffusion3Pipeline",
"StableDiffusionAdapterPipeline",
"StableDiffusionAttendAndExcitePipeline",
Expand Down
12 changes: 11 additions & 1 deletion src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -889,6 +889,7 @@ def multistep_dpm_solver_third_order_update(
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Expand Down Expand Up @@ -967,6 +968,15 @@ def multistep_dpm_solver_third_order_update(
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t

def index_for_timestep(self, timestep, schedule_timesteps=None):
Expand Down Expand Up @@ -1073,7 +1083,7 @@ def step(
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
else:
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample)
prev_sample = self.multistep_dpm_solver_third_order_update(self.model_outputs, sample=sample, noise=noise)

if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
Expand Down
10 changes: 10 additions & 0 deletions src/diffusers/schedulers/scheduling_dpmsolver_multistep_inverse.py
Original file line number Diff line number Diff line change
Expand Up @@ -764,6 +764,7 @@ def multistep_dpm_solver_third_order_update(
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Expand Down Expand Up @@ -842,6 +843,15 @@ def multistep_dpm_solver_third_order_update(
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h) - 2.0 * h) / (2.0 * h) ** 2 - 0.5)) * D2
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t

def _init_step_index(self, timestep):
Expand Down
24 changes: 23 additions & 1 deletion src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -264,6 +264,10 @@ def get_order_list(self, num_inference_steps: int) -> List[int]:
orders = [1, 2] * (steps // 2)
elif order == 1:
orders = [1] * steps

if self.config.final_sigmas_type == "zero":
orders[-1] = 1

return orders

@property
Expand Down Expand Up @@ -812,6 +816,7 @@ def singlestep_dpm_solver_third_order_update(
model_output_list: List[torch.Tensor],
*args,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Expand Down Expand Up @@ -909,6 +914,23 @@ def singlestep_dpm_solver_third_order_update(
- (sigma_t * ((torch.exp(h) - 1.0) / h - 1.0)) * D1
- (sigma_t * ((torch.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2
)
elif self.config.algorithm_type == "sde-dpmsolver++":
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s2 * torch.exp(-h)) * sample
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1_1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s2 * torch.exp(-h)) * sample
+ (alpha_t * (1.0 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h) + (-2.0 * h)) / (-2.0 * h) ** 2 - 0.5)) * D2
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t

def singlestep_dpm_solver_update(
Expand Down Expand Up @@ -970,7 +992,7 @@ def singlestep_dpm_solver_update(
elif order == 2:
return self.singlestep_dpm_solver_second_order_update(model_output_list, sample=sample, noise=noise)
elif order == 3:
return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample)
return self.singlestep_dpm_solver_third_order_update(model_output_list, sample=sample, noise=noise)
else:
raise ValueError(f"Order must be 1, 2, 3, got {order}")

Expand Down
Loading