Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 27 additions & 4 deletions examples/controlnet/README_sd3.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# ControlNet training example for Stable Diffusion 3 (SD3)
# ControlNet training example for Stable Diffusion 3/3.5 (SD3/3.5)

The `train_controlnet_sd3.py` script shows how to implement the ControlNet training procedure and adapt it for [Stable Diffusion 3](https://arxiv.org/abs/2403.03206).
The `train_controlnet_sd3.py` script shows how to implement the ControlNet training procedure and adapt it for [Stable Diffusion 3](https://arxiv.org/abs/2403.03206) and [Stable Diffusion 3.5](https://stability.ai/news/introducing-stable-diffusion-3-5).

## Running locally with PyTorch

Expand Down Expand Up @@ -51,9 +51,9 @@ Please download the dataset and unzip it in the directory `fill50k` in the `exam

## Training

First download the SD3 model from [Hugging Face Hub](https://huggingface.co/stabilityai/stable-diffusion-3-medium). We will use it as a base model for the ControlNet training.
First download the SD3 model from [Hugging Face Hub](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers) or the SD3.5 model from [Hugging Face Hub](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium). We will use it as a base model for the ControlNet training.
> [!NOTE]
> As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in:
> As the model is gated, before using it with diffusers you first need to go to the [Stable Diffusion 3 Medium Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers) or [Stable Diffusion 3.5 Large Hugging Face page](https://huggingface.co/stabilityai/stable-diffusion-3.5-medium), fill in the form and accept the gate. Once you are in, you need to log in so that your system knows you’ve accepted the gate. Use the command below to log in:

```bash
huggingface-cli login
Expand Down Expand Up @@ -90,6 +90,8 @@ accelerate launch train_controlnet_sd3.py \
--gradient_accumulation_steps=4
```

To train a ControlNet model for Stable Diffusion 3.5, replace the `MODEL_DIR` with `stabilityai/stable-diffusion-3.5-medium`.

To better track our training experiments, we're using flags `validation_image`, `validation_prompt`, and `validation_steps` to allow the script to do a few validation inference runs. This allows us to qualitatively check if the training is progressing as expected.

Our experiments were conducted on a single 40GB A100 GPU.
Expand Down Expand Up @@ -124,6 +126,8 @@ image = pipe(
image.save("./output.png")
```

Similarly, for SD3.5, replace the `base_model_path` with `stabilityai/stable-diffusion-3.5-medium` and controlnet_path `DavyMorgan/sd35-controlnet-out'.

## Notes

### GPU usage
Expand All @@ -135,6 +139,8 @@ Make sure to use the right GPU when configuring the [accelerator](https://huggin

## Example results

### SD3

#### After 500 steps with batch size 8

| | |
Expand All @@ -150,3 +156,20 @@ Make sure to use the right GPU when configuring the [accelerator](https://huggin
|| pale golden rod circle with old lace background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![pale golden rod circle with old lace background](https://huggingface.co/datasets/DavyMorgan/sd3-controlnet-results/resolve/main/step-6500.png) |

### SD3.5

#### After 500 steps with batch size 8

| | |
|-------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
|| pale golden rod circle with old lace background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![pale golden rod circle with old lace background](https://huggingface.co/datasets/DavyMorgan/sd3-controlnet-results/resolve/main/step-500-3.5.png) |


#### After 3000 steps with batch size 8:

| | |
|-------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------:|
|| pale golden rod circle with old lace background |
![conditioning image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/controlnet_training/conditioning_image_1.png) | ![pale golden rod circle with old lace background](https://huggingface.co/datasets/DavyMorgan/sd3-controlnet-results/resolve/main/step-3000-3.5.png) |

21 changes: 21 additions & 0 deletions examples/controlnet/test_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,27 @@ def test_controlnet_sd3(self):
self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors")))


class ControlNetSD35(ExamplesTestsAccelerate):
def test_controlnet_sd3(self):
with tempfile.TemporaryDirectory() as tmpdir:
test_args = f"""
examples/controlnet/train_controlnet_sd3.py
--pretrained_model_name_or_path=hf-internal-testing/tiny-sd35-pipe
--dataset_name=hf-internal-testing/fill10
--output_dir={tmpdir}
--resolution=64
--train_batch_size=1
--gradient_accumulation_steps=1
--controlnet_model_name_or_path=DavyMorgan/tiny-controlnet-sd35
--max_train_steps=4
--checkpointing_steps=2
""".split()

run_command(self._launch_args + test_args)

self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors")))


class ControlNetflux(ExamplesTestsAccelerate):
def test_controlnet_flux(self):
with tempfile.TemporaryDirectory() as tmpdir:
Expand Down
20 changes: 18 additions & 2 deletions examples/controlnet/train_controlnet_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -263,6 +263,12 @@ def parse_args(input_args=None):
help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
" If not specified controlnet weights are initialized from unet.",
)
parser.add_argument(
"--num_extra_conditioning_channels",
type=int,
default=0,
help="Number of extra conditioning channels for controlnet.",
)
parser.add_argument(
"--revision",
type=str,
Expand Down Expand Up @@ -539,6 +545,9 @@ def parse_args(input_args=None):
default=77,
help="Maximum sequence length to use with with the T5 text encoder",
)
parser.add_argument(
"--dataset_preprocess_batch_size", type=int, default=1000, help="Batch size for preprocessing dataset."
)
parser.add_argument(
"--validation_prompt",
type=str,
Expand Down Expand Up @@ -986,7 +995,9 @@ def main(args):
controlnet = SD3ControlNetModel.from_pretrained(args.controlnet_model_name_or_path)
else:
logger.info("Initializing controlnet weights from transformer")
controlnet = SD3ControlNetModel.from_transformer(transformer)
controlnet = SD3ControlNetModel.from_transformer(
transformer, num_extra_conditioning_channels=args.num_extra_conditioning_channels
)

transformer.requires_grad_(False)
vae.requires_grad_(False)
Expand Down Expand Up @@ -1123,7 +1134,12 @@ def compute_text_embeddings(batch, text_encoders, tokenizers):
# fingerprint used by the cache for the other processes to load the result
# details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401
new_fingerprint = Hasher.hash(args)
train_dataset = train_dataset.map(compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint)
train_dataset = train_dataset.map(
compute_embeddings_fn,
batched=True,
batch_size=args.dataset_preprocess_batch_size,
new_fingerprint=new_fingerprint,
)

del text_encoder_one, text_encoder_two, text_encoder_three
del tokenizer_one, tokenizer_two, tokenizer_three
Expand Down
2 changes: 0 additions & 2 deletions src/diffusers/models/transformers/transformer_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Any, Dict, List, Optional, Tuple, Union

import torch
Expand Down
24 changes: 20 additions & 4 deletions tests/pipelines/controlnet_sd3/test_controlnet_sd3.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,9 @@ class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTes
)
batch_params = frozenset(["prompt", "negative_prompt"])

def get_dummy_components(self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm"):
def get_dummy_components(
self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False
):
torch.manual_seed(0)
transformer = SD3Transformer2DModel(
sample_size=32,
Expand All @@ -74,6 +76,7 @@ def get_dummy_components(self, num_controlnet_layers: int = 3, qk_norm: Optional
pooled_projection_dim=64,
out_channels=8,
qk_norm=qk_norm,
dual_attention_layers=() if not use_dual_attention else (0, 1),
)

torch.manual_seed(0)
Expand All @@ -88,7 +91,10 @@ def get_dummy_components(self, num_controlnet_layers: int = 3, qk_norm: Optional
caption_projection_dim=32,
pooled_projection_dim=64,
out_channels=8,
qk_norm=qk_norm,
dual_attention_layers=() if not use_dual_attention else (0,),
)

clip_text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
Expand Down Expand Up @@ -173,8 +179,7 @@ def get_dummy_inputs(self, device, seed=0):

return inputs

def test_controlnet_sd3(self):
components = self.get_dummy_components()
def run_pipe(self, components, use_sd35=False):
sd_pipe = StableDiffusion3ControlNetPipeline(**components)
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
sd_pipe.set_progress_bar_config(disable=None)
Expand All @@ -187,12 +192,23 @@ def test_controlnet_sd3(self):

assert image.shape == (1, 32, 32, 3)

expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
if not use_sd35:
expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
else:
expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328])

assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f"Expected: {expected_slice}, got: {image_slice.flatten()}"

def test_controlnet_sd3(self):
components = self.get_dummy_components()
self.run_pipe(components)

def test_controlnet_sd35(self):
components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True)
self.run_pipe(components, use_sd35=True)

@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
def test_xformers_attention_forwardGenerator_pass(self):
pass
Expand Down
Loading