-
Couldn't load subscription status.
- Fork 6.5k
Mochi docs #9934
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Mochi docs #9934
Changes from 7 commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
dd65ae5
update
DN6 ee28596
update
DN6 9ba4aaf
Merge branch 'main' into mochi-docs
sayakpaul fc7d50b
Merge branch 'main' into mochi-docs
sayakpaul 9519ffc
Merge branch 'main' into mochi-docs
sayakpaul 4c64987
update
DN6 25aea7d
update
DN6 dd40011
update
DN6 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
@@ -13,7 +13,7 @@ | |||||||||||||||||
| # limitations under the License. | ||||||||||||||||||
| --> | ||||||||||||||||||
|
|
||||||||||||||||||
| # Mochi | ||||||||||||||||||
| # Mochi 1 Preview | ||||||||||||||||||
|
|
||||||||||||||||||
| [Mochi 1 Preview](https://huggingface.co/genmo/mochi-1-preview) from Genmo. | ||||||||||||||||||
|
|
||||||||||||||||||
|
|
@@ -25,6 +25,202 @@ Make sure to check out the Schedulers [guide](../../using-diffusers/schedulers.m | |||||||||||||||||
|
|
||||||||||||||||||
| </Tip> | ||||||||||||||||||
|
|
||||||||||||||||||
| ## Generating videos with Mochi-1 Preview | ||||||||||||||||||
|
|
||||||||||||||||||
| The following example will download the full precision `mochi-1-preview` weights and produce the highest quality results but will require at least 42GB VRAM to run. | ||||||||||||||||||
|
|
||||||||||||||||||
| ```python | ||||||||||||||||||
| import torch | ||||||||||||||||||
| from diffusers import MochiPipeline | ||||||||||||||||||
| from diffusers.utils import export_to_video | ||||||||||||||||||
|
|
||||||||||||||||||
| pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview") | ||||||||||||||||||
|
|
||||||||||||||||||
| # Enable memory savings | ||||||||||||||||||
| pipe.enable_model_cpu_offload() | ||||||||||||||||||
| pipe.enable_vae_tiling() | ||||||||||||||||||
|
|
||||||||||||||||||
| prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k." | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.autocast("cuda", torch.bfloat16, cache_enabled=False): | ||||||||||||||||||
| frames = pipe(prompt, num_frames=85).frames[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| export_to_video(frames, "mochi.mp4", fps=30) | ||||||||||||||||||
| ``` | ||||||||||||||||||
|
|
||||||||||||||||||
| ## Using a lower precision variant to save memory | ||||||||||||||||||
|
|
||||||||||||||||||
| The following example will use the `bfloat16` variant of the model and requires 22GB VRAM to run. There is a slight drop in the quality of the generated video as a result. | ||||||||||||||||||
sayakpaul marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||||||||||||||
|
|
||||||||||||||||||
| ```python | ||||||||||||||||||
| import torch | ||||||||||||||||||
| from diffusers import MochiPipeline | ||||||||||||||||||
| from diffusers.utils import export_to_video | ||||||||||||||||||
|
|
||||||||||||||||||
| pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", variant="bf16", torch_dtype=torch.bfloat16) | ||||||||||||||||||
|
|
||||||||||||||||||
| # Enable memory savings | ||||||||||||||||||
| pipe.enable_model_cpu_offload() | ||||||||||||||||||
| pipe.enable_vae_tiling() | ||||||||||||||||||
|
|
||||||||||||||||||
| prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k." | ||||||||||||||||||
| frames = pipe(prompt, num_frames=85).frames[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| export_to_video(frames, "mochi.mp4", fps=30) | ||||||||||||||||||
| ``` | ||||||||||||||||||
|
|
||||||||||||||||||
| ## Reproducing the results from the Genmo Mochi repo | ||||||||||||||||||
|
|
||||||||||||||||||
| The [Genmo Mochi implementation](https://github.com/genmoai/mochi/tree/main) uses different precision values for each stage in the inference process. The text encoder and VAE use `torch.float32`, while the DiT uses `torch.bfloat16` with the [attention kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html#torch.nn.attention.sdpa_kernel) set to `EFFICIENT_ATTENTION`. Diffusers pipelines currently do not support setting different `dtypes` for different stages of the pipeline. In order to run inference in the same way as the the original implementation, please refer to the following example. | ||||||||||||||||||
|
|
||||||||||||||||||
| <Tip> | ||||||||||||||||||
| THe original Mochi implementation zeros out empty prompts. However, enabling this option and placing the entire pipeline under autocast can lead to numerical overflows with the T5 text encoder. | ||||||||||||||||||
|
|
||||||||||||||||||
| When enabling `force_zeros_for_empty_prompt`, it is recommended to run the text encoding step outside the autocast context in full precision. | ||||||||||||||||||
| </Tip> | ||||||||||||||||||
|
|
||||||||||||||||||
| <Tip> | ||||||||||||||||||
| Decoding the latents in full precision is very memory intensive. You will need at least 70GB VRAM to generate the 163 frames | ||||||||||||||||||
| in this example. To reduce memory, either reduce the number of frames or run the decoding step in `torch.bfloat16` | ||||||||||||||||||
| </Tip> | ||||||||||||||||||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Even if we use
Suggested change
|
||||||||||||||||||
|
|
||||||||||||||||||
| ```python | ||||||||||||||||||
| import torch | ||||||||||||||||||
| from torch.nn.attention import SDPBackend, sdpa_kernel | ||||||||||||||||||
|
|
||||||||||||||||||
| from diffusers import MochiPipeline | ||||||||||||||||||
| from diffusers.utils import export_to_video | ||||||||||||||||||
| from diffusers.video_processor import VideoProcessor | ||||||||||||||||||
|
|
||||||||||||||||||
| pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", force_zeros_for_empty_prompt=True) | ||||||||||||||||||
| pipe.enable_vae_tiling() | ||||||||||||||||||
| pipe.enable_model_cpu_offload() | ||||||||||||||||||
|
|
||||||||||||||||||
| prompt = "An aerial shot of a parade of elephants walking across the African savannah. The camera showcases the herd and the surrounding landscape." | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.no_grad(): | ||||||||||||||||||
| prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask = ( | ||||||||||||||||||
| pipe.encode_prompt(prompt=prompt) | ||||||||||||||||||
| ) | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.autocast("cuda", torch.bfloat16): | ||||||||||||||||||
| with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION): | ||||||||||||||||||
| frames = pipe( | ||||||||||||||||||
| prompt_embeds=prompt_embeds, | ||||||||||||||||||
| prompt_attention_mask=prompt_attention_mask, | ||||||||||||||||||
| negative_prompt_embeds=negative_prompt_embeds, | ||||||||||||||||||
| negative_prompt_attention_mask=negative_prompt_attention_mask, | ||||||||||||||||||
| guidance_scale=4.5, | ||||||||||||||||||
| num_inference_steps=64, | ||||||||||||||||||
| height=480, | ||||||||||||||||||
| width=848, | ||||||||||||||||||
| num_frames=163, | ||||||||||||||||||
| generator=torch.Generator("cuda").manual_seed(0), | ||||||||||||||||||
| output_type="latent", | ||||||||||||||||||
| return_dict=False, | ||||||||||||||||||
| )[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| video_processor = VideoProcessor(vae_scale_factor=8) | ||||||||||||||||||
| has_latents_mean = hasattr(pipe.vae.config, "latents_mean") and pipe.vae.config.latents_mean is not None | ||||||||||||||||||
| has_latents_std = hasattr(pipe.vae.config, "latents_std") and pipe.vae.config.latents_std is not None | ||||||||||||||||||
| if has_latents_mean and has_latents_std: | ||||||||||||||||||
| latents_mean = ( | ||||||||||||||||||
| torch.tensor(pipe.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype) | ||||||||||||||||||
| ) | ||||||||||||||||||
| latents_std = ( | ||||||||||||||||||
| torch.tensor(pipe.vae.config.latents_std).view(1, 12, 1, 1, 1).to(frames.device, frames.dtype) | ||||||||||||||||||
| ) | ||||||||||||||||||
| frames = frames * latents_std / pipe.vae.config.scaling_factor + latents_mean | ||||||||||||||||||
| else: | ||||||||||||||||||
| frames = frames / pipe.vae.config.scaling_factor | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.no_grad(): | ||||||||||||||||||
| video = pipe.vae.decode(frames.to(pipe.vae.dtype), return_dict=False)[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| video = video_processor.postprocess_video(video)[0] | ||||||||||||||||||
| export_to_video(video, "mochi.mp4", fps=30) | ||||||||||||||||||
| ``` | ||||||||||||||||||
|
|
||||||||||||||||||
| ## Running inference with multiple GPUs | ||||||||||||||||||
|
|
||||||||||||||||||
| It is possible to split the large Mochi transformer across multiple GPUs using the `device_map` and `max_memory` options in `from_pretrained`. In the following example we split the model across two GPUs, each with 24GB of VRAM. | ||||||||||||||||||
|
|
||||||||||||||||||
| ```python | ||||||||||||||||||
| import torch | ||||||||||||||||||
| from diffusers import MochiPipeline, MochiTransformer3DModel | ||||||||||||||||||
| from diffusers.utils import export_to_video | ||||||||||||||||||
|
|
||||||||||||||||||
| model_id = "genmo/mochi-1-preview" | ||||||||||||||||||
| transformer = MochiTransformer3DModel.from_pretrained( | ||||||||||||||||||
| model_id, | ||||||||||||||||||
| subfolder="transformer", | ||||||||||||||||||
| device_map="auto", | ||||||||||||||||||
| max_memory={0: "24GB", 1: "24GB"} | ||||||||||||||||||
| ) | ||||||||||||||||||
|
|
||||||||||||||||||
| pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer) | ||||||||||||||||||
| pipe.enable_model_cpu_offload() | ||||||||||||||||||
| pipe.enable_vae_tiling() | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False): | ||||||||||||||||||
| frames = pipe( | ||||||||||||||||||
| prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.", | ||||||||||||||||||
| negative_prompt="", | ||||||||||||||||||
| height=480, | ||||||||||||||||||
| width=848, | ||||||||||||||||||
| num_frames=85, | ||||||||||||||||||
| num_inference_steps=50, | ||||||||||||||||||
| guidance_scale=4.5, | ||||||||||||||||||
| num_videos_per_prompt=1, | ||||||||||||||||||
| generator=torch.Generator(device="cuda").manual_seed(0), | ||||||||||||||||||
| max_sequence_length=256, | ||||||||||||||||||
| output_type="pil", | ||||||||||||||||||
| ).frames[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| export_to_video(frames, "output.mp4", fps=30) | ||||||||||||||||||
| ``` | ||||||||||||||||||
|
|
||||||||||||||||||
| ## Using single file loading with the Mochi Transformer | ||||||||||||||||||
|
|
||||||||||||||||||
| You can use `from_single_file` to load the Mochi transformer in its original format. | ||||||||||||||||||
|
|
||||||||||||||||||
| <Tip> | ||||||||||||||||||
| Diffusers currently doesn't support using the FP8 scaled versions of the Mochi single file checkpoints. | ||||||||||||||||||
| </Tip> | ||||||||||||||||||
|
|
||||||||||||||||||
| ```python | ||||||||||||||||||
| import torch | ||||||||||||||||||
| from diffusers import MochiPipeline, MochiTransformer3DModel | ||||||||||||||||||
| from diffusers.utils import export_to_video | ||||||||||||||||||
|
|
||||||||||||||||||
| model_id = "genmo/mochi-1-preview" | ||||||||||||||||||
|
|
||||||||||||||||||
| ckpt_path = "https://huggingface.co/Comfy-Org/mochi_preview_repackaged/blob/main/split_files/diffusion_models/mochi_preview_bf16.safetensors" | ||||||||||||||||||
|
|
||||||||||||||||||
| transformer = MochiTransformer3DModel.from_pretrained(ckpt_path, torch_dtype=torch.bfloat16) | ||||||||||||||||||
|
|
||||||||||||||||||
| pipe = MochiPipeline.from_pretrained(model_id, transformer=transformer) | ||||||||||||||||||
| pipe.enable_model_cpu_offload() | ||||||||||||||||||
| pipe.enable_vae_tiling() | ||||||||||||||||||
|
|
||||||||||||||||||
| with torch.autocast(device_type="cuda", dtype=torch.bfloat16, cache_enabled=False): | ||||||||||||||||||
| frames = pipe( | ||||||||||||||||||
| prompt="Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k.", | ||||||||||||||||||
| negative_prompt="", | ||||||||||||||||||
| height=480, | ||||||||||||||||||
| width=848, | ||||||||||||||||||
| num_frames=85, | ||||||||||||||||||
| num_inference_steps=50, | ||||||||||||||||||
| guidance_scale=4.5, | ||||||||||||||||||
| num_videos_per_prompt=1, | ||||||||||||||||||
| generator=torch.Generator(device="cuda").manual_seed(0), | ||||||||||||||||||
| max_sequence_length=256, | ||||||||||||||||||
| output_type="pil", | ||||||||||||||||||
| ).frames[0] | ||||||||||||||||||
|
|
||||||||||||||||||
| export_to_video(frames, "output.mp4", fps=30) | ||||||||||||||||||
| ``` | ||||||||||||||||||
|
|
||||||||||||||||||
| ## MochiPipeline | ||||||||||||||||||
|
|
||||||||||||||||||
| [[autodoc]] MochiPipeline | ||||||||||||||||||
|
|
||||||||||||||||||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
(One line above this) Only FlowMatchEulerDiscreteScheduler has invert_sigmas, so anything else wouldn't work as of now as I understand it
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Cc: @hlky here too. @DN6 do we wanna remove this bit? I think we need to remove it from all flow pipelines.