Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 9 additions & 5 deletions src/diffusers/schedulers/scheduling_deis_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,18 +266,22 @@ def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.devic
)

sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
if self.config.use_karras_sigmas:
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
Expand Down Expand Up @@ -408,7 +412,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -432,7 +436,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
10 changes: 6 additions & 4 deletions src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
Original file line number Diff line number Diff line change
Expand Up @@ -400,10 +400,12 @@ def set_timesteps(
sigmas = np.exp(lambdas)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
Expand Down Expand Up @@ -556,7 +558,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -580,7 +582,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -287,10 +287,10 @@ def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torc
timesteps = timesteps.copy().astype(np.int64)
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
Expand Down Expand Up @@ -429,7 +429,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -453,7 +453,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
8 changes: 4 additions & 4 deletions src/diffusers/schedulers/scheduling_dpmsolver_sde.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,10 +380,10 @@ def set_timesteps(
sigmas = self._convert_to_karras(in_sigmas=sigmas)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

second_order_timesteps = self._second_order_timesteps(sigmas, log_sigmas)
Expand Down Expand Up @@ -484,7 +484,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -508,7 +508,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
12 changes: 7 additions & 5 deletions src/diffusers/schedulers/scheduling_dpmsolver_singlestep.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,16 +339,18 @@ def set_timesteps(
)

sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
if self.config.use_karras_sigmas:
log_sigmas = np.log(sigmas)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
Expand Down Expand Up @@ -498,7 +500,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -522,7 +524,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
8 changes: 4 additions & 4 deletions src/diffusers/schedulers/scheduling_euler_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -419,11 +419,11 @@ def set_timesteps(
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

if self.config.final_sigmas_type == "sigma_min":
Expand Down Expand Up @@ -517,7 +517,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

def _convert_to_beta(
Expand All @@ -540,7 +540,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
8 changes: 4 additions & 4 deletions src/diffusers/schedulers/scheduling_heun_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -329,10 +329,10 @@ def set_timesteps(
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
Expand Down Expand Up @@ -421,7 +421,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -445,7 +445,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -289,10 +289,10 @@ def set_timesteps(
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

self.log_sigmas = torch.from_numpy(log_sigmas).to(device)
Expand Down Expand Up @@ -409,7 +409,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -433,7 +433,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
8 changes: 4 additions & 4 deletions src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -288,10 +288,10 @@ def set_timesteps(
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

self.log_sigmas = torch.from_numpy(log_sigmas).to(device=device)
Expand Down Expand Up @@ -422,7 +422,7 @@ def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps:
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas

# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
Expand All @@ -446,7 +446,7 @@ def _convert_to_beta(
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

sigmas = torch.Tensor(
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
Expand Down
Loading
Loading