Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/hub/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -192,6 +192,8 @@
title: Combine datasets and export
- local: datasets-duckdb-vector-similarity-search
title: Perform vector similarity search
- local: datasets-embedding-atlas
title: Embedding Atlas
- local: datasets-fiftyone
title: FiftyOne
- local: datasets-pandas
Expand Down
164 changes: 164 additions & 0 deletions docs/hub/datasets-embedding-atlas.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# Embedding Atlas

[Embedding Atlas](https://apple.github.io/embedding-atlas/) is an interactive visualization tool for exploring large embedding spaces. It enables you to visualize, cross-filter, and search embeddings alongside associated metadata, helping you understand patterns and relationships in high-dimensional data. All computation happens in your computer, ensuring your data remains private and secure.

## Key Features

- **Interactive exploration**: Navigate through millions of embeddings with smooth, responsive visualization
- **Browser-based computation**: Compute embeddings and projections locally without sending data to external servers
- **Cross-filtering**: Link and filter data across multiple metadata columns
- **Search capabilities**: Find similar data points to a given query or existing item
- **Multiple integration options**: Use via command line, Jupyter widgets, or web interface

## Prerequisites

First, install Embedding Atlas:

```bash
pip install embedding-atlas
```

If you plan to load private datasets from the Hugging Face Hub, you'll also need to [login with your Hugging Face account](/docs/huggingface_hub/quick-start#login):

```bash
hf auth login
```

## Loading Datasets from the Hub

Embedding Atlas provides seamless integration with the Hugging Face Hub, allowing you to visualize embeddings from any dataset directly.

### Using the Command Line

The simplest way to visualize a Hugging Face dataset is through the command line interface. Try it with the IMDB dataset:

```bash
# Load the IMDB dataset from the Hub
embedding-atlas stanfordnlp/imdb

# Specify the text column for embedding computation
embedding-atlas stanfordnlp/imdb --text "text"

# Load only a sample for faster exploration
embedding-atlas stanfordnlp/imdb --text "text" --sample 5000
```

For your own datasets, use the same pattern:

```bash
# Load your dataset from the Hub
embedding-atlas username/dataset-name

# Load multiple splits
embedding-atlas username/dataset-name --split train --split test

# Specify custom text column
embedding-atlas username/dataset-name --text "content"
```

### Using Python and Jupyter

You can also use Embedding Atlas in Jupyter notebooks for interactive exploration:

```python
from embedding_atlas.widget import EmbeddingAtlasWidget
from datasets import load_dataset
import pandas as pd

# Load the IMDB dataset from Hugging Face Hub
dataset = load_dataset("stanfordnlp/imdb", split="train[:5000]")

# Convert to pandas DataFrame
df = dataset.to_pandas()

# Create interactive widget
widget = EmbeddingAtlasWidget(df)
widget
```

For your own datasets:

```python
from embedding_atlas.widget import EmbeddingAtlasWidget
from datasets import load_dataset
import pandas as pd

# Load your dataset from the Hub
dataset = load_dataset("username/dataset-name", split="train")
df = dataset.to_pandas()

# Create interactive widget
widget = EmbeddingAtlasWidget(df)
widget
```

### Working with Pre-computed Embeddings

If you have datasets with pre-computed embeddings, you can load them directly:

```bash
# Load dataset with pre-computed coordinates
embedding-atlas username/dataset-name \
--x "embedding_x" \
--y "embedding_y"

# Load with pre-computed nearest neighbors
embedding-atlas username/dataset-name \
--neighbors "neighbors_column"
```

## Customizing Embeddings

Embedding Atlas uses [SentenceTransformers](https://huggingface.co/sentence-transformers) by default but supports custom embedding models:

```bash
# Use a specific embedding model
embedding-atlas stanfordnlp/imdb \
--text "text" \
--model "sentence-transformers/all-MiniLM-L6-v2"

# For models requiring remote code execution
embedding-atlas username/dataset-name \
--model "custom/model" \
--trust-remote-code
```

### UMAP Projection Parameters

Fine-tune the dimensionality reduction for your specific use case:

```bash
embedding-atlas stanfordnlp/imdb \
--text "text" \
--umap-n-neighbors 30 \
--umap-min-dist 0.1 \
--umap-metric "cosine"
```

## Use Cases

### Exploring Text Datasets

Visualize and explore text corpora to identify clusters, outliers, and patterns:

```python
from embedding_atlas.widget import EmbeddingAtlasWidget
from datasets import load_dataset
import pandas as pd

# Load a text classification dataset
dataset = load_dataset("stanfordnlp/imdb", split="train[:5000]")
df = dataset.to_pandas()

# Visualize with metadata
widget = EmbeddingAtlasWidget(df)
widget
```


## Additional Resources

- [Embedding Atlas GitHub Repository](https://github.com/apple/embedding-atlas)
- [Official Documentation](https://apple.github.io/embedding-atlas/)
- [Interactive Demo](https://apple.github.io/embedding-atlas/upload/)
- [Command Line Reference](https://apple.github.io/embedding-atlas/tool.html)
1 change: 1 addition & 0 deletions docs/hub/datasets-libraries.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ The table below summarizes the supported libraries and their level of integratio
| [Datasets](./datasets-usage) | 🤗 Datasets is a library for accessing and sharing datasets for Audio, Computer Vision, and Natural Language Processing (NLP). | ✅ | ✅ |
| [Distilabel](./datasets-distilabel) | The framework for synthetic data generation and AI feedback. | ✅ | ✅ |
| [DuckDB](./datasets-duckdb) | In-process SQL OLAP database management system. | ✅ | ✅ |
| [Embedding Atlas](./datasets-embedding-atlas) | Interactive visualization and exploration tool for large embeddings. | ✅ | ❌ |
| [FiftyOne](./datasets-fiftyone) | FiftyOne is a library for curation and visualization of image, video, and 3D data. | ✅ | ✅ |
| [Pandas](./datasets-pandas) | Python data analysis toolkit. | ✅ | ✅ |
| [Polars](./datasets-polars) | A DataFrame library on top of an OLAP query engine. | ✅ | ✅ |
Expand Down