Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ nanotron = [
"tensorboardX"
]
tensorboardX = ["tensorboardX"]
vllm = ["vllm>=0.10.0,<0.10.2", "ray", "more_itertools"]
vllm = ["vllm>=0.10.0,<0.12.0", "ray", "more_itertools"]
sglang = ["sglang"]
quality = ["ruff>=v0.11.0","pre-commit"]
tests = ["pytest>=7.4.0","deepdiff","pip>=25.2"]
Expand Down
8 changes: 5 additions & 3 deletions src/lighteval/models/vllm/vllm_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,6 @@
from lighteval.utils.cache_management import SampleCache, cached
from lighteval.utils.imports import is_package_available, requires


logger = logging.getLogger(__name__)


Expand All @@ -52,6 +51,7 @@
destroy_distributed_environment,
destroy_model_parallel,
)
from vllm.inputs import token_inputs
from vllm.transformers_utils.tokenizer import get_tokenizer
from vllm.v1.engine.async_llm import AsyncEngineArgs, AsyncLLM

Expand Down Expand Up @@ -437,7 +437,8 @@ def _generate(
@ray.remote(num_gpus=self.tensor_parallel_size)
def run_inference_one_model(model_args: dict, sampling_params: SamplingParams, requests):
llm = LLM(**model_args)
return llm.generate(prompt_token_ids=requests, sampling_params=sampling_params)
requests = [token_inputs(prompt_token_ids=request) for request in requests]
return llm.generate(prompts=requests, sampling_params=sampling_params)

# dispatch requests to all self.data_parallel_size workers, in interleaved fashion
# interleaved important to balance context lengths across workers
Expand All @@ -454,8 +455,9 @@ def run_inference_one_model(model_args: dict, sampling_params: SamplingParams, r
if x is not None
]
else:
inputs = [token_inputs(prompt_token_ids=input) for input in inputs]
outputs = self.model.generate(
prompt_token_ids=inputs,
prompts=inputs,
sampling_params=sampling_params,
use_tqdm=True,
)
Expand Down
Loading